Patents by Inventor Qinlian Bu

Qinlian Bu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942996
    Abstract: Disclosed are an optical signal outputting device and method, and a storage medium. The device includes a pump laser, first fiber grating and target fiber grating connected seriatim, the pump laser being configured to emit a first optical signal to the first fiber grating upon receiving a target waveband optical signal transmission instruction, and convert a second waveband optical signal into a target waveband optical signal by resonance upon receiving an optical signal adjusting instruction, then output the same; the first fiber grating being configured to filter the first optical signal to obtain a first waveband optical signal and send it to the target fiber grating; and the target fiber grating being configured to filter the first waveband optical signal to obtain a second waveband optical signal and the target waveband optical signal to use one of them to deliver the optical signal adjusting instruction to the pump laser.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: March 26, 2024
    Inventors: Nina Lv, Qinlian Bu
  • Patent number: 11909168
    Abstract: The present invention relates to the technical field of optical communications, and relates to an optical amplification method and an amplifier, and in particular, to a self-adaptive wave band amplification method and an amplifier. The present invention consists of a master amplifying unit and a slave amplifying unit, and can autonomously detect the service signal wave band range of an optical transmission line, and according to the detection result, the two amplifying units do not need to perform scheduling or configuration from the level of network management, and perform direct interaction and action from the bottom layer to implement self-adaptive on, off and adjustment in real time. On one hand, power consumption is reduced, and energy is saved; and on the other hand, the performance is optimized, and an optimal optical amplification index is obtained.
    Type: Grant
    Filed: December 25, 2017
    Date of Patent: February 20, 2024
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Zhenyu Yu, Qinlian Bu, Chengpeng Fu, Xiao Cai, Fuxing Deng, Rui Lei
  • Patent number: 11901937
    Abstract: Disclosed are a long-distance optical fiber detecting method, apparatus, device and system, and a storage medium. The method comprises: in response to a detection request of a target node on a to-be-detected optical fiber, determining a first and second sampling sequence that are formed by respectively propagating, on said optical fiber, a first and second optical signal respectively sent from each end of the optical fiber through an OTDR; determining a total length of the optical fiber; generating a detection result according to the first and second sampling sequence and the total length, and sending the detection result to the target node. By determining the first and second sampling sequence and combining the total length of the optical fiber, a detection result of the to-be-detected optical fiber is generated.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: February 13, 2024
    Assignee: ACCELINK TECHNOLOGIES CO., LTD.
    Inventors: Qi Zhou, Tao Xiong, Chunping Yu, Qinlian Bu
  • Publication number: 20230336267
    Abstract: An optical signal adjusting apparatus, device and method, and storage medium. The optical signal adjusting apparatus (1) includes a differential operation circuit (11), a feedforward amplification circuit (12) and a control circuit (13), wherein input ends of control circuit (13) are respectively connected to an output end of the differential operation circuit (11) and an output end of the feedforward amplification circuit (12); the differential operation circuit (11) is configured to perform a differential operation on an input optical signal and an output optical signal, to obtain a differential value; the feedforward amplification circuit (12) is configured to perform feedforward amplification on the input optical signal, to obtain a feedforward value; and the control circuit (13) is configured to receive the differential value and the feedforward value, and adjusts the output optical signal according to the differential value and the feedforward value, to obtain an adjusted output optical signal.
    Type: Application
    Filed: December 8, 2020
    Publication date: October 19, 2023
    Inventors: Zhi CHEN, Li XIAO, Qinlian BU, Chunping YU, Weiqing ZHANG
  • Patent number: 11770192
    Abstract: The present invention relates to the technical field of optical communications, and particularly relates to a wavelength locking optical module, a device, and a wavelength locking method. The optical module comprises a DSP unit, a TOSA, and a ROSA. The DSP unit has a signal output terminal connected to the TOSA and a signal input terminal connected to the ROSA. A TEC is provided within the TOSA, and is used to adjust a temperature according to a control signal sent from the DSP unit and accordingly adjust a emission wavelength of the TOSA. An optical filter is provided within the ROSA and used to filter a wave, such that light having a pre-determined wavelength passes through the filter and is converted into an electrical signal and output to the DSP unit. The DSP unit calculates an optical power according to the received electrical signal, and determines wavelength control of the TOSA according to an optical power change.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: September 26, 2023
    Inventors: Shunli Zhou, Hui Zou, Chenggang Liu, Qinlian Bu
  • Patent number: 11675149
    Abstract: Disclosed are a dual-carrier integrated optical device and a photoelectric module. The optical device comprises: an encapsulation unit, and a ceramic substrate and two independent carrier assemblies arranged in the encapsulation unit. Every carrier assembly comprises a DWDM active chip arranged on the first heat sink, a first heat sink arranged on the independent control element, and an independent control element for adjusting the temperature of the DWDM active chip to adjust an output wavelength of the DWDM active chip. The DWDM active chip and the independent control element are respectively connected to the ceramic substrate. According to the characteristic that the wavelength of the active chip will shift with the temperature, an output laser wavelength of each active chip is independently controlled by means of the independent control element, which achieves higher wavelength stability and can realize optical signal transmission at different rates.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: June 13, 2023
    Inventors: Yangyang Yue, Xiaoping Song, Chengpeng Fu, Jian Li, Qinlian Bu, Hongchun Xu, Wuping Zhang, Chenggang Liu
  • Publication number: 20230106273
    Abstract: Disclosed are a long-distance optical fiber detecting method, apparatus, device and system, and a storage medium. The method comprises: in response to a detection request of a target node on a to-be-detected optical fiber, determining a first and second sampling sequence that are formed by respectively propagating, on said optical fiber, a first and second optical signal respectively sent from each end of the optical fiber through an OTDR; determining a total length of the optical fiber; generating a detection result according to the first and second sampling sequence and the total length, and sending the detection result to the target node. By determining the first and second sampling sequence and combining the total length of the optical fiber, a detection result of the to-be-detected optical fiber is generated.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 6, 2023
    Inventors: Qi Zhou, Tao Xiong, Chunping Yu, Qinlian Bu
  • Patent number: 11495936
    Abstract: An optical amplifier assembly and a detection method capable of dynamically performing optical time-domain reflection detection. The detection method comprises obtaining signal light intensity detection signals from a first and second photodetectors and sending a control signal to an L-band Raman pump when the signal light intensity in the second photodetector is lower than a first preset threshold, so that the L-band Raman pump enters into an optical time-domain reflection detection mode; sending a control signal to the L-band Raman pump when the signal light intensity in the second photodetector is greater than or equal the first preset threshold, so that the L-band Raman pump enters into an L-Band Raman optical fiber amplifier operation mode.
    Type: Grant
    Filed: December 25, 2017
    Date of Patent: November 8, 2022
    Inventors: Zhenyu Yu, Qinlian Bu, Chengpeng Fu, Zhijun Ye, Fei Liu, Fuxing Deng, Rui Lei, Xiao Cai
  • Publication number: 20220271840
    Abstract: Disclosed are an optical signal outputting device and method, and a storage medium. The device includes a pump laser, first fiber grating and target fiber grating connected seriatim, the pump laser being configured to emit a first optical signal to the first fiber grating upon receiving a target waveband optical signal transmission instruction, and convert a second waveband optical signal into a target waveband optical signal by resonance upon receiving an optical signal adjusting instruction, then output the same; the first fiber grating being configured to filter the first optical signal to obtain a first waveband optical signal and send it to the target fiber grating; and the target fiber grating being configured to filter the first waveband optical signal to obtain a second waveband optical signal and the target waveband optical signal to use one of them to deliver the optical signal adjusting instruction to the pump laser.
    Type: Application
    Filed: December 4, 2019
    Publication date: August 25, 2022
    Inventors: Nina LV, Qinlian BU
  • Publication number: 20220216921
    Abstract: The present invention relates to the technical field of optical communications, and particularly relates to a wavelength locking optical module, a device, and a wavelength locking method. The optical module comprises a DSP unit, a TOSA, and a ROSA. The DSP unit has a signal output terminal connected to the TOSA and a signal input terminal connected to the ROSA. A TEC is provided within the TOSA, and is used to adjust a temperature according to a control signal sent from the DSP unit and accordingly adjust a emission wavelength of the TOSA. An optical filter is provided within the ROSA and used to filter a wave, such that light having a pre-determined wavelength passes through the filter and is converted into an electrical signal and output to the DSP unit. The DSP unit calculates an optical power according to the received electrical signal, and determines wavelength control of the TOSA according to an optical power change.
    Type: Application
    Filed: December 13, 2019
    Publication date: July 7, 2022
    Applicant: Wuhan Telecommunication Devices Co., Ltd
    Inventors: Shunli Zhou, Hui Zou, Chenggang Liu, Qinlian Bu
  • Patent number: 11296810
    Abstract: An optical circuit includes: a multicast-and-select (MCS) switch and multiple optical selective devices coupled to output ports of the MCS switch. The selective devices may select a single optical channel by blocking some of wavelengths of light passing therethrough and passing at least one other wavelength. The selective devices may be wave blockers or tunable optical filters. The optical circuit further includes an optical amplifying array, wherein each amplifier has an input port optically coupled to one of the selective devices. At least some of the amplifiers have pump light ports for receiving at least a portion of the pump light from one or more laser pumps or from another of the optical amplifiers, wherein the pumps are capable of providing pump light sufficient to fully saturate all of the rare earth doped optical fibers in the array.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: April 5, 2022
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Alan Solheim, Qinlian Bu, Weiqing Zhang, Chengpeng Fu, Lijie Qiao
  • Patent number: 11290185
    Abstract: Provided by the embodiments of the present invention are a remote optical fiber dispersion compensation device and method, the dispersion compensation device comprising: a distance measurement module, used for measuring a remote distance to a remote access optical fiber; a channel monitoring module, used for monitoring the spectral power of a transmission service wavelength channel; and a remote optical fiber dispersion power equalization module, used for compensating the dispersion of a transmission service signal and adjusting the insertion loss of the wavelength channel according to the measured remote distance of the remote access optical fiber and the monitored spectral power of the transmission service wavelength channel.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: March 29, 2022
    Inventors: Li Xiao, Weiqing Zhang, Qinlian Bu, Chengpeng Fu, Zhi Chen, Lijie Qiao
  • Patent number: 11251871
    Abstract: The present disclosure relates to a technical field of optical communication, and provides a method and an apparatus for determining maximum gain of Raman fiber amplifier. Wherein the method includes obtaining transmission performance parameters of a current optical fiber transmission line; respectively obtaining impact factors A1, A2, A4 according to a distance between a joint and a pump source, a fiber loss coefficient, and a fiber length included in the transmission performance parameters; calculating a joint loss value AttAeff according to a distance between a joint and a pump source, a fiber loss coefficient, and looking up impact factor A3 according to AttAeff; determining an actual maximum gain which may actually be achieved by the Raman fiber amplifier according to A1, A2, A3, A4.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: February 15, 2022
    Assignee: ACCELINK TECHNOLOGIES CO., LTD.
    Inventors: Chengpeng Fu, Jintao Tao, Menghui Le, Cuihong Zhang, Di Fang, Qinlian Bu, Chunpin Yu, Fei Liu, Peng Zhang
  • Patent number: 11239628
    Abstract: A method for realizing precise gain control for a hybrid fibre amplifier, and a hybrid fibre amplifier, in which by an erbium-doped fibre amplifier firstly outputting a constant power, a comparable source signal optical power is provided for a raman fibre amplifier of a next stage. A feedback for the gain control may be formed by comparing a source signal optical power calculated after starting pumping of the Raman fibre amplifier and a source signal optical power detected after pumping stops, thereby greatly improving gain control precision of the Raman fibre amplifier. Moreover, the erbium-doped fibre amplifier parts of all the hybrid fibre amplifiers may simultaneously output a constant optical power, and the Raman amplifier parts of all the hybrid fibre amplifiers may simultaneously start calibration, so that the time for starting operation of the entire system may be improved greatly.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: February 1, 2022
    Inventors: Jintao Tao, Chengpeng Fu, Cuihong Zhang, Fei Cai, Tao Xiong, Yunyu Jing, Qinlian Bu, Chunping Yu
  • Publication number: 20210328671
    Abstract: Provided by the embodiments of the present invention are a remote optical fiber dispersion compensation device and method, the dispersion compensation device comprising: a distance measurement module, used for measuring a remote distance to a remote access optical fiber; a channel monitoring module, used for monitoring the spectral power of a transmission service wavelength channel; and a remote optical fiber dispersion power equalization module, used for compensating the dispersion of a transmission service signal and adjusting the insertion loss of the wavelength channel according to the measured remote distance of the remote access optical fiber and the monitored spectral power of the transmission service wavelength channel.
    Type: Application
    Filed: December 25, 2018
    Publication date: October 21, 2021
    Applicant: Accelink Technologies Co., Ltd
    Inventors: Li Xiao, Weiqing Zhang, Qinlian Bu, Chengpeng Fu, Zhi Chen, Lijie Qiao
  • Publication number: 20210263246
    Abstract: Disclosed are a dual-carrier integrated optical device and a photoelectric module. The optical device comprises: an encapsulation unit, and a ceramic substrate and two independent carrier assemblies arranged in the encapsulation unit. Every carrier assembly comprises a DWDM active chip arranged on the first heat sink, a first heat sink arranged on the independent control element, and an independent control element for adjusting the temperature of the DWDM active chip to adjust an output wavelength of the DWDM active chip. The DWDM active chip and the independent control element are respectively connected to the ceramic substrate. According to the characteristic that the wavelength of the active chip will shift with the temperature, an output laser wavelength of each active chip is independently controlled by means of the independent control element, which achieves higher wavelength stability and can realize optical signal transmission at different rates.
    Type: Application
    Filed: December 25, 2018
    Publication date: August 26, 2021
    Applicant: Wuhan Telecommunication Devices Co., Ltd
    Inventors: Yangyang Yue, Xiaoping Song, Chengpeng Fu, Jian Li, Qinlian Bu, Hongchun Xu, Wuping Zhang, Chenggang Liu
  • Publication number: 20210234325
    Abstract: An opposing pump structure for twin 980-nm pump lasers in an EDFA, the structure comprising erbium-doped optical fiber, two 980-nm pump lasers, two signal/pump combiners, and anti-interference structures. Two 980-nm pump lasers output first pump light and second pump light, respectively, and first pump light and second pump light are injected into erbium-doped optical fiber in forward direction and reverse direction, respectively. Optical transmission path of first pump light and optical transmission path of second pump light are separately provided with anti-interference structures. Anti-interference structures are two fiber Bragg gratings or two optical filters.
    Type: Application
    Filed: December 25, 2018
    Publication date: July 29, 2021
    Applicant: Accelink Technologies Co., Ltd
    Inventors: Zhenyu Yu, Qinlian Bu, Chengpeng Fu
  • Patent number: 11044019
    Abstract: A tunable optical dispersion compensator (TODC) for providing chromatic dispersion (CD) compensation of optical signals in a plurality of optical channels comprises: a plurality of CD compensation fibers; a tunable optical switch configurable for directing an optical signal in any of the plurality of optical channels to one of the plurality of fibers, dependent on a central wavelength of the optical signal; a first switch configurable for directing all signals in the plurality of optical channels to a first CD compensation fiber, in a first mode of operation, and for bypassing the first CD compensation fiber in a second mode of operation; and, the first CD compensation fiber, wherein the first switch and the tunable optical switch are connected so as to enable combining CD compensation provided by the first CD compensation fiber and CD compensation provided by any one of the plurality of CD compensation fibers.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: June 22, 2021
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Lijie Qiao, Qinlian Bu, Li Xiao
  • Publication number: 20210021096
    Abstract: The present invention relates to the technical field of optical communications, and relates to an optical amplification method and an amplifier, and in particular, to a self-adaptive wave band amplification method and an amplifier. The present invention consists of a master amplifying unit and a slave amplifying unit, and can autonomously detect the service signal wave band range of an optical transmission line, and according to the detection result, the two amplifying units do not need to perform scheduling or configuration from the level of network management, and perform direct interaction and action from the bottom layer to implement self-adaptive on, off and adjustment in real time. On one hand, power consumption is reduced, and energy is saved; and on the other hand, the performance is optimized, and an optimal optical amplification index is obtained.
    Type: Application
    Filed: December 25, 2017
    Publication date: January 21, 2021
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Zhenyu Yu, Qinlian Bu, Chengpeng Fu, Xiao Cai, Fuxing Deng, Rui Lei
  • Publication number: 20200220316
    Abstract: An optical amplifier assembly and a detection method capable of dynamically performing optical time-domain reflection detection. The detection method comprises obtaining signal light intensity detection signals from a first and second photodetectors and sending a control signal to an L-band Raman pump when it is determined that the signal light intensity in the second photodetector is lower than a first preset threshold, so that the L-band Raman pump enters into an optical time-domain reflection detection mode; sending a control signal to the L-band Raman pump when the signal light intensity in the second photodetector is greater than or equal the first preset threshold, so that the L-band Raman pump enters into an L-Band Raman optical fiber amplifier operation mode.
    Type: Application
    Filed: December 25, 2017
    Publication date: July 9, 2020
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Zhenyu Yu, Qinlian Bu, Chengpeng Fu, Zhijun Ye, Fei Liu, Fuxing Deng, Rui Lei, Xiao Cai