Patents by Inventor Que T. Doan

Que T. Doan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975196
    Abstract: Methods and systems for assisting a patient to reprogram parameters of an implantable medical device, such as a spinal cord stimulator, are disclosed. A patient may use an external controller, which may be either a dedicated device or a personal computing device, to interact with their implantable medical device and evaluate the efficacy of their therapy. If the efficacy diminishes, the patient may use their external controller to adjust either the neural dosage (i.e., frequency, pulse width, and/or amplitude) and/or the location at which stimulation is provided. A reprogramming assistant is provided, which guides the patient in adjusting their stimulation using their external controller. The patient may use supra-perception or sub-perception stimulation for the adjustment. The implantable medical device may include pre-programmed “rescue programs” to assist the patient in recovering the efficacy of their therapy.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: May 7, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Ismael Huertas Fernandez, Que T. Doan
  • Patent number: 11951314
    Abstract: Methods for determining stimulation for a patient having a stimulator device are disclosed. A model is received at an external system indicative of a range or volume of preferred stimulation parameters, which model is preferably specific to and determined for the patient. The external system receives a plurality of pieces of fitting information for the patient, including information indicative of a symptom of the patient, information indicative of stimulation provided by the stimulator device during a fitting procedure, and/or phenotype information for the patient. The external system determines one or more sets of stimulation parameters for the patient using the pieces of fitting information. In one example, training data is applied to the pieces of fitting information to select the one or more sets of stimulation parameters from the range or volume of preferred stimulation parameters in the model.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: April 9, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Ismael Huertas Fernandez, Que T. Doan, Michael A. Moffitt, Changfang Zhu
  • Patent number: 11944816
    Abstract: Methods and systems for testing and treating spinal cord stimulation (SCS) patients are disclosed. Patients are eventually treated with sub-perception (paresthesia free) therapy. However, supra-perception stimulation is used during “sweet spot searching” during which active electrodes are selected for the patient. This allows sweet spot searching to occur much more quickly and without the need to wash in the various electrode combinations that are tried. After selecting electrodes using supra-perception therapy, therapy is titrated to sub-perception levels using the selected electrodes. Such sub-perception therapy has been investigated using pulses at or below 10 kHz, and it has been determined that a statistically significant correlation exists between pulse width (PW) and frequency (F) in this frequency range at which SCS patients experience significant reduction in symptoms such as back pain.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: April 2, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Jianwen Gu, Ismael Huertas Fernandez, Rosana Esteller, Michael A. Moffitt
  • Publication number: 20240082579
    Abstract: Software for providing a Graphical User Interface (GUI) for use in a clinician programmer for programming an implantable pulse generator (IPG) or external trial stimulator (ETS) is disclosed. A user may define in the GUI multiple pole configurations (e.g., monopoles, bipoles, etc.) which may be used independently to provide stimulation to a patient via the IPG or ETS's electrode array. Selected of the pole configurations can be linked or associated as a group in the GUI and used to concurrently provide stimulation. The pole configuration group may be steered or moved in the electrode array using a single movement instruction which moves all pole configurations in the group simultaneously. This allows the relative positions of the pole configurations in the group to remain constant as the group is moved.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Inventors: Michael A. Moffitt, Que T. Doan
  • Publication number: 20240082582
    Abstract: New waveforms for use in an implantable pulse generator or external trial stimulator are disclosed which mimic actively-driven biphasic pulses, and which are particularly useful for issuing low frequencies pulses. The waveforms comprise at each electrode interleaved first and second pulses. Each first pulse comprises a first monophasic pulse and a first passive charge recovery period. Each second pulse comprises a second monophasic pulse with a polarity opposite the first monophasic pulse and a second passive charge recovery period. Preferably, the amplitudes and pulse widths of the first and second monophasic pulses are equal, or at least charge balanced at each electrode. The first and second monophasic pulses mimic the functionality of a symmetric biphasic pulse, with the first monophasic pulse mimicking the functionality of the biphasic pulse's first phase, and the with the second monophasic pulse mimicking the functionality of the biphasic pulse's second phase.
    Type: Application
    Filed: October 30, 2023
    Publication date: March 14, 2024
    Inventors: Que T. Doan, Luca Antonello Annecchino, Ismael Huertas Fernandez
  • Publication number: 20240017067
    Abstract: Systems and methods for controlling neurostimulation based on patient past usage pattern of stimulation therapy are disclose. An exemplary electrostimulation system comprises an electrostimulator to provide a bolus stimulation therapy (BST) to a neural target. The BST comprises stimulation boluses each comprising stimulation pulses during a first duration, any two consecutive boluses being separated by a stimulation-free second duration. A controller circuit can receive information about BST setting and past BST usage in the patient, analyze a BST usage pattern of the patient based on the received information, and determine or adjust a future BST schedule based at least on the BST usage pattern. The electrostimulator can deliver BST to the neural target in accordance with the BST setting and the determined or adjusted future BST schedule.
    Type: Application
    Filed: July 5, 2023
    Publication date: January 18, 2024
    Inventors: Dennis Allen Vansickle, Que T. Doan, Esteban Alonso Ortiz Cubero, Vuong Tuan Nguyen
  • Patent number: 11850426
    Abstract: Software for providing a Graphical User Interface (GUI) for use in a clinician programmer for programming an implantable pulse generator (IPG) or external trial stimulator (ETS) is disclosed. A user may define in the GUI multiple pole configurations (e.g., monopoles, bipoles, etc.) which may be used independently to provide stimulation to a patient via the IPG or ETS's electrode array. Selected of the pole configurations can be linked or associated as a group in the GUI and used to concurrently provide stimulation. The pole configuration group may be steered or moved in the electrode array using a single movement instruction which moves all pole configurations in the group simultaneously. This allows the relative positions of the pole configurations in the group to remain constant as the group is moved.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: December 26, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Que T. Doan
  • Patent number: 11844947
    Abstract: New waveforms for use in an implantable pulse generator or external trial stimulator are disclosed which mimic actively-driven biphasic pulses, and which are particularly useful for issuing low frequencies pulses. The waveforms comprise at each electrode interleaved first and second pulses. Each first pulse comprises a first monophasic pulse and a first passive charge recovery period. Each second pulse comprises a second monophasic pulse with a polarity opposite the first monophasic pulse and a second passive charge recovery period. Preferably, the amplitudes and pulse widths of the first and second monophasic pulses are equal, or at least charge balanced at each electrode. The first and second monophasic pulses mimic the functionality of a symmetric biphasic pulse, with the first monophasic pulse mimicking the functionality of the biphasic pulse's first phase, and the with the second monophasic pulse mimicking the functionality of the biphasic pulse's second phase.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: December 19, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Luca Antonello Annecchino, Ismael Huertas Fernandez
  • Publication number: 20230355979
    Abstract: Systems and methods for controlling autonomic symptoms or side effects via spinal cord stimulation are discussed. An exemplary neuromodulation system comprises an electrostimulator to provide spinal cord stimulation (SCS) to a neural target, a user interface device to receive a user input including an autonomic symptom and affected anatomy, and a controller circuit to determine or adjust a stimulation parameter based at least on the autonomic symptoms and the affected anatomy. Spinal cord stimulation can be delivered in accordance with the determined or adjusted stimulation parameter to alleviate the autonomic symptom, or to treat or alleviate autonomic disorders.
    Type: Application
    Filed: May 8, 2023
    Publication date: November 9, 2023
    Inventors: Ismael Huertas Fernandez, Que T. Doan
  • Publication number: 20230355978
    Abstract: Systems and methods for controlling an implantable stimulator device such as a spinal cord stimulation are disclosed. Optimal stimulation parameters for the patient, which may be personalized for the patient based on test stimulation and organized as a neural dose, are subject to duty cycling in which stimulation is applied during an on duration and is turned off during an off duration. The duty cycling applied is automatically determined by and dependent on the stimulation parameters chosen, and in particular the frequency of those parameters. Further, a user interface element is provided to allow a user to automatically step thought suitable duty cycle values determined to be appropriate for the stimulation parameters. As such, the user does need not need to engage in guess work to specify individual on and off times when duty cycling is desired.
    Type: Application
    Filed: April 10, 2023
    Publication date: November 9, 2023
    Inventors: Ismael Huertas Fernandez, Que T. Doan
  • Publication number: 20230321441
    Abstract: An example of a system for delivering neurostimulation from a stimulation device to a patient may include a programming control circuit, a sensory profiling circuit, and a stimulation control circuit. The programming control circuit may be configured to program the stimulation device for controlling delivery of the neurostimulation according to one or more stimulation waveforms and one or more stimulation fields. The sensory profiling circuit may be configured to receive information regarding painful symptoms of the patient and to determine a pain sensory profile for the patient using the received information. The stimulation control circuit may be configured to determine a recommendation for one or more spinal cord stimulation (SCS) therapies using the determined pain sensory profile and to determine the one or more stimulation waveforms and the one or more stimulation fields using the recommended one or more SCS therapies.
    Type: Application
    Filed: March 27, 2023
    Publication date: October 12, 2023
    Inventors: Ismael Huertas Fernandez, Que T. Doan
  • Publication number: 20230173283
    Abstract: External system software is disclosed that automatically varies the location at which stimulation is applied to the patient in an Implantable Pulse Generator (IPG). Location variation occurs in an area defined with reference to the electrode array, and may occur randomly or via pre-defined path within the area. Preferably the area is defined around a single location deemed optimal for the patient. Parameters relating to the area and to how often the stimulation is moved can be set automatically or manually by a user of the software. The area may be defined using a probability distribution function (PDF) that tends to keep the stimulation at or close to an optimal position, while still allowing the location to be set anywhere in the area. The area may also be defined in the software using measured parameters indicative of the effectiveness of stimulation at different locations.
    Type: Application
    Filed: November 30, 2022
    Publication date: June 8, 2023
    Inventors: Tianhe Zhang, Que T. Doan
  • Publication number: 20230148877
    Abstract: A system may include a neuromodulator and a processing system. The neuromodulator may be configured to be programmed with a set of more than one program to deliver neuromodulation. The processing system may be configured to: receive sensed data indicative of activity, motion and/or posture of a patient; analyze the activity, motion and/or posture of the patient; and perform a process, based on the analyzed activity, motion and/or posture, for switching from one program in the set of more than one program to another program from the set of more than one program. The process may include automatically implementing the other program from the set of more than one program or suggesting to switch to the other program from the set of more than one program.
    Type: Application
    Filed: November 16, 2022
    Publication date: May 18, 2023
    Inventors: Luca Antonello Annecchino, Matthew Lee McDonald, Que T. Doan, Changfang Zhu, Rosana Esteller
  • Publication number: 20230128146
    Abstract: Techniques are disclosed for adjusting sub-perception stimulation applied to a patient by an Implantable Pulse Generator (IPG). Adjustment can occur through use of one or more modulation functions associated with a stimulation modulation algorithm that adjusts the total charge provided by the stimulation to the patient as a function of time. The modulation function and algorithm can adjust the charge either by duty cycling the stimulation, or by adjusting the sub-perception stimulation parameters, and such adjustment can occur in the IPG or an external device. The stimulation modulation algorithm may use one or more models when adjusting the stimulation parameters to keep them at optimal values for sub-perception stimulation while simultaneous adjusting the charge stimulation provided as prescribed by the modulation function.
    Type: Application
    Filed: February 5, 2021
    Publication date: April 27, 2023
    Inventors: Ismael Huertas Fernandez, Que T. Doan
  • Publication number: 20230123406
    Abstract: An example of a system may include a processor; and a memory device comprising instructions, which when executed by the processor, cause the processor to access at least one of: patient input, clinician input, or automatic input; use the patient input, clinician input, or automatic input in a search method, the search method designed to evaluate a plurality of candidate neuromodulation parameter sets to identify an optimal neuromodulation parameter set; and program a neuromodulator using the optimal neuromodulation parameter set to stimulate a patient.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Christopher Ewan Gillespie, Michael A. Moffitt, Que T. Doan, Changfang Zhu
  • Publication number: 20230060761
    Abstract: A patient external controller is provided for controlling sub-perception stimulation provided by a patients implantable stimulator device having an electrode array. Control circuitry in the controller renders a graphical user interface (GUI), including a location at which the sub-perception stimulation is provided within the electrode array, and a pre-defined region in which the location can be moved. The pre-defined region may be constrained to less than the entire electrode array. The control circuitry receives one or more first inputs to move the location of the sub-perception stimulation within the region and to program the stimulator to move the sub-perception stimulation to the moved location in the electrode array. The control circuitry can enable adjustment of an amplitude of the sub-perception stimulation to a value that is less than or equal to a perception threshold. Once moved, the sub-perception stimulation an be stored as a second stimulation program.
    Type: Application
    Filed: October 21, 2020
    Publication date: March 2, 2023
    Inventor: Que T. Doan
  • Patent number: 11590350
    Abstract: This document discusses, among other things, systems and methods to provide a paresthesia therapy to a patient using an implantable neuromodulation system, wherein providing the paresthesia therapy may include delivering to the patient an electrical waveform having a duration and a distribution of frequencies in the range of 0.001 kHz to 20 kHz, wherein the distribution of frequencies includes a first frequency group of one or more frequencies and a second frequency group of one or more frequencies, and wherein the patient continuously experiences paresthesia throughout the duration of the electrical waveform.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: February 28, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Que T. Doan
  • Patent number: 11565114
    Abstract: An example of a system may include a processor, and a memory device comprising instructions, which when executed by the processor, cause the processor to access at least one of patient input, clinician input, or automatic input, use the patient input, clinician input, or automatic input in a search method, the search method designed to evaluate a plurality of candidate neuromodulation parameter sets to identify an optimal neuromodulation parameter set, and program a neuromodulator using the optimal neuromodulation parameter set to stimulate a patient.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: January 31, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Christopher Ewan Gillespie, Michael A. Moffitt, Que T. Doan, Changfang Zhu
  • Publication number: 20220387808
    Abstract: Systems and methods are disclosed to permit a patient to use his external controller to move the location of stimulation in an implantable stimulator system. The external controller can be programmed with a steering algorithm, which prompts the patient to enter certain data regarding their symptoms (e.g., pain), such as pain scores and stimulation coverage. Such data is preferably entered for a plurality of different regions of the patient's body. The algorithm can compute for each body regions a targeting precision value (TP), and from these values determine a steering vector D that suggests a direction and/or a magnitude that stimulation can be moved in the electrode array to more precisely target the patient's pain. The patient may then move the location of the stimulation in accordance with the steering vector using their external controller. The algorithm can be repeated if necessary to again move the stimulation.
    Type: Application
    Filed: May 16, 2022
    Publication date: December 8, 2022
    Inventors: Ismael Huertas Fernandez, Que T. Doan
  • Publication number: 20220379127
    Abstract: Systems and methods are disclosed in which a time series analysis algorithm is used to analyze inputs such as adjustments a patient has made to the amplitude of stimulation in an implantable stimulator system. The algorithm uses these inputs to predict how the patient would likely adjust the amplitude in the future, i.e. to predict future amplitudes for the patient as a function of time. Preferably, the algorithm determines one or more of an amplitude level, at least one seasonal variation, or at least one trend when predicting the amplitude. This predicted amplitude can then be used to automatically adjust the amplitude of the stimulation provided by the patient's stimulator. The algorithm may only use previous amplitude adjustments to predict the amplitude, other time-varying inputs, or combinations of both.
    Type: Application
    Filed: May 16, 2022
    Publication date: December 1, 2022
    Inventors: Ismael Huertas Fernandez, Que T. Doan