Patents by Inventor Quinlan Yee Shuck

Quinlan Yee Shuck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11999022
    Abstract: An additive manufacturing system includes an energy source and a material delivery device. The energy source is configured to direct an energy beam toward a component to form a melt pool. The material delivery device is configured to feed a wire toward the melt pool to deposit material on the component. In some examples, the material delivery device is configured to discharge a current to the wire to disengage the wire from the melt pool. In some examples, the material delivery device is configured to measure an arc voltage between the wire and the component.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: June 4, 2024
    Assignee: Rolls-Royce Corporation
    Inventor: Quinlan Yee Shuck
  • Patent number: 11986911
    Abstract: An additive manufacturing system includes an energy source and a material delivery device. The energy source is configured to direct an energy beam toward a component to form a melt pool. The material delivery device is configured to feed a wire toward the melt pool to deposit material on the component. In some examples, the material delivery device is configured to discharge a current to the wire to disengage the wire from the melt pool. In some examples, the material delivery device is configured to measure an arc voltage between the wire and the component.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: May 21, 2024
    Assignee: Rolls-Royce Corporation
    Inventor: Quinlan Yee Shuck
  • Patent number: 11980938
    Abstract: In some examples, systems and techniques for repairing or otherwise forming a blade of a bladed disk. In one example, a method including positioning a shield member around a perimeter of a partial blade extending from a rotor disk of a bladed disk, the shield member being positioned adjacent to a build surface of the partial blade; and depositing, with the shield member around the perimeter of the partial blade, a material on the build surface using an additive manufacturing technique to form a repaired portion on the build surface of the partial blade.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: May 14, 2024
    Assignees: Rolls-Royce Corporation, Rolls-Royce plc
    Inventors: Scott Nelson, Martyn Anthony Jones, Quinlan Yee Shuck, Peter E. Daum, Nathaniel Ashburn
  • Patent number: 11976569
    Abstract: In general, techniques are described for fused filament fabrication of abradable coatings. An additive manufacturing system comprising a substrate defining a major surface, a filament delivery device, and a computing device may be configured to perform various aspects of the techniques. The computing device may be configured to control the filament delivery device to deposit a filament on the substrate, the filament including a powder and a binder, wherein the binder is configured to be substantially removed from the filament and the powder includes a metal or alloy configured to be sintered to form an abradable layer.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: May 7, 2024
    Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.
    Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
  • Patent number: 11890682
    Abstract: A method for connecting or joining a first substrate and a second substrate across an interface between the first substrate and the second substrate. The method includes disposing a fastener precursor in the bore and sintering the fastener precursor in the bore. The fastener precursor densifies and shrinks in at least one dimension to mechanically interlock with a contour in the bore and form a mechanical fastener in the bore, and the mechanical fastener forms an interlock between the first substrate and the second substrate.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: February 6, 2024
    Assignee: Rolls-Royce Corporation
    Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu
  • Patent number: 11865642
    Abstract: A method of forming a ferrous metal case-hardened layer using additive manufacturing. The method includes delivering, by a material delivery device, a filler material to a surface of a substrate. The substrate includes a first ferrous metal. The filler material includes a second ferrous metal and a carbon-based material. The method also includes directing, by an energy delivery device, an energy toward a volume of the filler material to join at least some of the filler material to the substrate to form a component.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: January 9, 2024
    Assignee: Rolls-Royce Corporation
    Inventors: Brian Drier, Amanda Dawn Graham, Robert Frederick Proctor, Quinlan Yee Shuck, Jacque Sue Bader
  • Patent number: 11833740
    Abstract: An example technique may include depositing, on or adjacent a substrate, a first volume of a polymeric material using an additive manufacturing technique. The first volume of the polymeric material has a first degree of polymer orientation associated with a first deposition rate and a first temperature. The example technique may include depositing, on or adjacent the substrate or the first volume of material, at least one second volume of the polymeric material. The second volume of the polymeric material has a second degree of polymer orientation associated with a second deposition rate and a second temperature. The first volume and the second volume are configured to respond to a shape change stimulus by exhibiting a respective first change in dimension and a second change in dimension. The first change in dimension is different from the second change in dimension by a predetermined threshold.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: December 5, 2023
    Assignee: Rolls-Royce Corporation
    Inventor: Quinlan Yee Shuck
  • Patent number: 11820070
    Abstract: An additive manufacturing technique includes depositing, via a filament delivery device, a filament onto a surface of a substrate. The filament includes a binder and a high entropy alloy powder. The technique also includes sacrificing the binder to form a preform and sintering the preform to form a component.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: November 21, 2023
    Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.
    Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
  • Patent number: 11813671
    Abstract: A material deposition head includes a body portion and at least one nozzle. The body portion includes a first end, a second end, and a first exterior surface extending from the first end to the second end. The at least one nozzle is coupled to the body portion at or near the second end. The nozzle defines a second exterior surface and a material delivery channel that is fluidically coupled to a fluidized powder source configured to provide a plurality of particles of a material. At least one of the first exterior surface or the second exterior surface includes a microtextured surface configured to reduce a wettability of molten particles of the plurality of particles thereon.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: November 14, 2023
    Assignee: Rolls-Royce Corporation
    Inventors: Scott Nelson, Quinlan Yee Shuck, Brandon David Ribic
  • Patent number: 11794250
    Abstract: In some examples, a method for additive manufacturing an article, the method including depositing a filament via a filament delivery device to form at least one track of the deposited filament, the at least one track of the deposited filament forming at least a portion of a preform article, wherein the filament includes a sacrificial binder and a powder, wherein the powder includes a plurality of elongated particles with each respective particle defining a longitudinal axis, wherein the longitudinal axes of the plurality of particles are substantially aligned with each other within the at least one track of the deposited filament; removing substantially all the binder from the at least one track of the preform article to form a powder article; and sintering the powder article to form a sintered article.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: October 24, 2023
    Assignee: Rolls-Royce Corporation
    Inventors: Quinlan Yee Shuck, Robert Frederick Proctor
  • Patent number: 11787105
    Abstract: An additively manufactured component that includes a tool with a region having a plurality of overlying metal layers each derived from a metal powder filament. The region has a predetermined yield point selected based on an operation to be performed with the tool.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: October 17, 2023
    Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.
    Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
  • Publication number: 20230321793
    Abstract: A system may include a powder source; a powder delivery device; an energy delivery device; and a computing device. The computing device may be configured to: control the powder source to deliver metal powder to the powder delivery device; control the powder delivery device to deliver the metal powder to a surface of an abrasive coating; and control the energy delivery device to deliver energy to at least one of the abrasive coating or the metal powder to cause the metal powder to be joined to the abrasive coating.
    Type: Application
    Filed: January 5, 2023
    Publication date: October 12, 2023
    Inventor: Quinlan Yee Shuck
  • Patent number: 11745264
    Abstract: In some examples, an additive manufacturing technique including forming an as-deposited coating on a substrate by depositing a filament via a filament delivery device, wherein the filament includes a sacrificial binder and a powder; removing substantially all the binder from the as-deposited coating; and sintering the as-deposited coating to form a thermal coating; wherein the thermal coating is configured to ablate in response to absorption of energy from an external environment, and wherein the ablation of the thermal coating reduces the energy transferred to the substrate.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: September 5, 2023
    Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.
    Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
  • Patent number: 11707788
    Abstract: In some examples, an additive manufacturing technique for forming a vacuum insulator. For example, a method including forming an article including a first layer, a second layer, and at least one support member extending between the first and second layer by depositing a filament via a filament delivery device, wherein the filament includes a sacrificial binder and a powder, and wherein the first layer, second layer, and at least one support member define an open cavity within the article; removing the binder; and sintering the article to form the vacuum insulator, wherein the vacuum insulator defines a vacuum environment in the cavity.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: July 25, 2023
    Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.
    Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
  • Patent number: 11697243
    Abstract: A method may include fused filament fabricating a fused filament fabricated component by delivering a softened filament to selected locations at or adjacent to a build surface. The softened filament may include a binder and a primary material. The binder is configured to release a secondary material upon heating at or above a conversion temperature. The method also may include heating the fused filament fabricated component to a temperature at or above the conversion temperature to sinter the primary material to form a sintered part and cause the binder to release the secondary material within the sintered part.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: July 11, 2023
    Assignee: Rolls-Royce Corporation
    Inventors: Evan Raeker, Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu
  • Patent number: 11680753
    Abstract: In some examples, a method for additively manufacturing a heat pipe, the method including depositing, via a filament delivery device, a filament to form a heat pipe preform, wherein the filament includes a binder and a metal or alloy powder; and sintering the heat pipe preform to form the heat pipe, the heat pipe including an outer shell, a wicking region, and a vapor transport region defined by the metal or alloy.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: June 20, 2023
    Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.
    Inventors: Quinlan Yee Shuck, Scott Nelson, Raymond Ruiwen Xu, Brandon David Ribic, Matthew R. Gold
  • Patent number: 11629412
    Abstract: A method may include cold spraying a masking material on selected locations of a component to form a masking layer, wherein the masking material comprises a metal or alloy; additively manufacturing an additively manufactured portion of the component at locations at which the masking layer is not present; and removing the masking layer from the component. The masking layer may be configured to protect portions of the component by covering or otherwise providing a physical barrier that reduces or prevents material from adhering to unwanted portions of the component during a subsequent manufacturing and/or repair technique. Additionally, the masking layer may be reflective to infrared radiation and/or intimately contact the component and function as a heat sink or thermally conductive layer to transfer heat from the component.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: April 18, 2023
    Assignees: Rolls-Royce Corporation, Rolls-Royce plc
    Inventors: Quinlan Yee Shuck, Scott Nelson, Martyn Anthony Jones, Peter E. Daum
  • Patent number: 11612986
    Abstract: A system may include a powder source; a powder delivery device; an energy delivery device; and a computing device. The computing device may be configured to: control the powder source to deliver metal powder to the powder delivery device; control the powder delivery device to deliver the metal powder to a surface of an abrasive coating; and control the energy delivery device to deliver energy to at least one of the abrasive coating or the metal powder to cause the metal powder to be joined to the abrasive coating.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: March 28, 2023
    Assignee: Rolls-Royce Corporation
    Inventor: Quinlan Yee Shuck
  • Publication number: 20230090298
    Abstract: A system may include one or more computing devices configured to receive image data representing illuminated powder of a powder stream between a powder delivery device of an additive manufacturing system and a build surface of a component; determine at least one metric associated with the powder stream based on the received image data; determine whether the at least one metric indicates an abnormal state of the at least one metric; and cause the additive manufacturing system to perform at least one action in response to determining that the at least one metric indicates the abnormal state.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 23, 2023
    Inventors: Scott Nelson, John Grubbs, Quinlan Yee Shuck
  • Publication number: 20230050995
    Abstract: An additive manufacturing system includes an energy source and a material delivery device. The energy source is configured to direct an energy beam toward a component to form a melt pool. The material delivery device is configured to feed a wire toward the melt pool to deposit material on the component. In some examples, the material delivery device is configured to discharge a current to the wire to disengage the wire from the melt pool. In some examples, the material delivery device is configured to measure an arc voltage between the wire and the component.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Inventor: Quinlan Yee Shuck