Patents by Inventor Qunzhou Bian

Qunzhou Bian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11788987
    Abstract: Method and systems for managing clear-down are provided. The method can include generating a clear-down trigger associated with an ion mobility spectrometer and operating the ion mobility spectrometer in fast clear-down mode in response to the clear-down trigger. Methods and systems can further provide that where the ion mobility spectrometer operates in fast-switching mode, the ion mobility spectrometer alternating a plurality of times between operation according to a positive ion mode and operation according to a negative ion mode, and further operating according to the positive ion mode for less than about 1 second before switching to the operation according to the negative ion mode, and operating according to the negative ion mode for less than about 1 second before switching to the operation according to the positive ion mode.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: October 17, 2023
    Inventors: Qunzhou Bian, John J. Carroll
  • Patent number: 11307172
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: April 19, 2022
    Assignee: Smiths Detection Montreal, Inc.
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Publication number: 20210389275
    Abstract: Method and systems for managing clear-down are provided. The method can include generating a clear-down trigger associated with an ion mobility spectrometer and operating the ion mobility spectrometer in fast clear-down mode in response to the clear-down trigger. Methods and systems can further provide that where the ion mobility spectrometer operates in fast-switching mode, the ion mobility spectrometer alternating a plurality of times between operation according to a positive ion mode and operation according to a negative ion mode, and further operating according to the positive ion mode for less than about 1 second before switching to the operation according to the negative ion mode, and operating according to the negative ion mode for less than about 1 second before switching to the operation according to the positive ion mode.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Qunzhou Bian, John J. Carroll
  • Patent number: 11131649
    Abstract: Method and systems for managing clear-down are provided. The method can include generating a clear-down trigger associated with an ion mobility spectrometer and operating the ion mobility spectrometer in fast clear-down mode in response to the clear-down trigger. Methods and systems can further provide that where the ion mobility spectrometer operates in fast-switching mode, the ion mobility spectrometer alternating a plurality of times between operation according to a positive ion mode and operation according to a negative ion mode, and further operating according to the positive ion mode for less than about 1 second before switching to the operation according to the negative ion mode, and operating according to the negative ion mode for less than about 1 second before switching to the operation according to the positive ion mode.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: September 28, 2021
    Assignee: SMITHS DETECTION MONTREAL INC.
    Inventors: Qunzhou Bian, John J. Carroll
  • Publication number: 20190178843
    Abstract: Method and systems for managing clear-down are provided. The method can include generating a clear-down trigger associated with an ion mobility spectrometer and operating the ion mobility spectrometer in fast clear-down mode in response to the clear-down trigger. Methods and systems can further provide that where the ion mobility spectrometer operates in fast-switching mode, the ion mobility spectrometer alternating a plurality of times between operation according to a positive ion mode and operation according to a negative ion mode, and further operating according to the positive ion mode for less than about 1 second before switching to the operation according to the negative ion mode, and operating according to the negative ion mode for less than about 1 second before switching to the operation according to the positive ion mode.
    Type: Application
    Filed: February 20, 2019
    Publication date: June 13, 2019
    Inventors: Qunzhou Bian, John J. Carroll
  • Publication number: 20190128844
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Application
    Filed: October 25, 2018
    Publication date: May 2, 2019
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Patent number: 10254247
    Abstract: Method and systems for managing clear-down are provided. The method can include generating a clear-down trigger associated with an ion mobility spectrometer and operating the ion mobility spectrometer in fast clear-down mode in response to the clear-down trigger. Methods and systems can further provide that where the ion mobility spectrometer operates in fast-switching mode, the ion mobility spectrometer alternating a plurality of times between operation according to a positive ion mode and operation according to a negative ion mode, and further operating according to the positive ion mode for less than about 1 second before switching to the operation according to the negative ion mode, and operating according to the negative ion mode for less than about 1 second before switching to the operation according to the positive ion mode.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: April 9, 2019
    Assignee: SMITHS DETECTION MONTREAL INC.
    Inventors: Qunzhou Bian, John J. Carroll
  • Patent number: 10139366
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 27, 2018
    Assignee: SMITHS DETECTION MONTREAL INC.
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Patent number: 8901489
    Abstract: Looped ionization sources for ion mobility spectrometers are described. The ionization sources can be used to ionize molecules from a sample of interest in order to identify the molecules based on the ions. In an implementation, an electrical ionization source includes a wire that is looped between electrical contacts. The wire is used to form a corona responsive to application of voltage between the wire and the walls of an ionization chamber. The corona can form when a sufficient voltage is applied between the wire and the walls. A difference in electrical potential between the wire and a wall forming an ionization chamber, in which wire is contained, can be used to draw the ions away from the wire. In embodiments, the wire can be heated to reduce the voltage used to strike the corona. The ions, subsequently, may ionize the molecules from the sample of interest. The looped corona source can also be used in mass spectrometers (MS).
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: December 2, 2014
    Assignee: Smiths Detection Montreal Inc.
    Inventors: Daniel Levin, Vlad Sergeyev, Volodimir Bondarenko, Bohdan Atamanchuk, Qunzhou Bian, Henryk Zaleski, Mark Piniarski, Simon Feldberg, Ronald Jackson
  • Publication number: 20140264021
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 18, 2014
    Applicant: Smiths Detection Montreal Inc.
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Publication number: 20140246581
    Abstract: Looped ionization sources for ion mobility spectrometers are described. The ionization sources can be used to ionize molecules from a sample of interest in order to identify the molecules based on the ions. In an implementation, an electrical ionization source includes a wire that is looped between electrical contacts. The wire is used to form a corona responsive to application of voltage between the wire and the walls of an ionization chamber. The corona can form when a sufficient voltage is applied between the wire and the walls. A difference in electrical potential between the wire and a wall forming an ionization chamber, in which wire is contained, can be used to draw the ions away from the wire. In embodiments, the wire can be heated to reduce the voltage used to strike the corona. The ions, subsequently, may ionize the molecules from the sample of interest. The looped corona source can also be used in mass spectrometers (MS).
    Type: Application
    Filed: June 15, 2012
    Publication date: September 4, 2014
    Applicant: SMITHS DETECTION MONTREAL INC.
    Inventors: Daniel Levin, Vlad Sergeyev, Volodimir Bondarenko, Bohdan Atamanchuk, Qunzhou Bian, Henryk Zaleski, Mark Piniarski, Simon Feldberg, Ronald Jackson
  • Publication number: 20130298938
    Abstract: Method and systems for managing clear-down are provided. The method can include generating a clear-down trigger associated with an ion mobility spectrometer and operating the ion mobility spectrometer in fast clear-down mode in response to the clear-down trigger. Methods and systems can further provide that where the ion mobility spectrometer operates in fast-switching mode, the ion mobility spectrometer alternating a plurality of times between operation according to a positive ion mode and operation according to a negative ion mode, and further operating according to the positive ion mode for less than about 1 second before switching to the operation according to the negative ion mode, and operating according to the negative ion mode for less than about 1 second before switching to the operation according to the positive ion mode.
    Type: Application
    Filed: October 27, 2011
    Publication date: November 14, 2013
    Applicant: SMITHS DETECTION MONTREAL INC.
    Inventors: Qunzhou Bian, John J. Carroll