Patents by Inventor Réal Vallée

Réal Vallée has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240069284
    Abstract: Mid-infrared-transparent optical fiber products with enhanced resistance to OH diffusion are disclosed, which may be used fiber laser oscillator and amplifiers systems. In one embodiment, an optical fiber product may include optical fiber configured for propagation of mid-infrared radiation toward a light-radiating endface of or coupled to the optical fiber, and a diffusion barrier disposed on the light-radiating endface and configured for allowing the mid-infrared radiation emanating from the light-radiating endface to pass therethrough and for preventing OH diffusion therethrough toward the light-radiating endface.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Applicant: Université Laval
    Inventors: Martin BERNIER, Réal VALLÉE, Souleymane TOUBOU BAH, Vincent FORTIN, Frédéric MAES, Yigit Ozan AYDIN
  • Patent number: 11846807
    Abstract: Mid-infrared-transparent optical fiber products with enhanced resistance to OH diffusion are disclosed, which may be used fiber laser oscillator and amplifiers systems. In one embodiment, an optical fiber product may include optical fiber configured for propagation of mid-infrared radiation toward a light-radiating endface of or coupled to the optical fiber, and a diffusion barrier disposed on the light-radiating endface and configured for allowing the mid-infrared radiation emanating from the light-radiating endface to pass therethrough and for preventing OH diffusion therethrough toward the light-radiating endface.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: December 19, 2023
    Assignee: Université Laval
    Inventors: Martin Bernier, Réal Vallée, Souleymane Toubou Bah, Vincent Fortin, Frédéric Maes, Yigit Ozan Aydin
  • Publication number: 20220276443
    Abstract: There is described a method of optically coupling a first optical fiber and a second optical fiber to one another. The method generally has a step of bringing a free end of the first optical fiber, the second optical fiber and liquid in close proximity to one another within a coupling region, the free end of the first optical fiber having a dimension below a critical dimension, the free end of the first optical fiber moving within said liquid to contact the second optical fiber along a given coupling length, said contact optically coupling the free end of the first optical fiber and the second optical fiber to one another.
    Type: Application
    Filed: August 20, 2020
    Publication date: September 1, 2022
    Inventors: Charles MATTE-BRETON, Sophie LAROCHELLE, Simon DUVAL, Réal VALLÉE, Martin BERNIER
  • Publication number: 20220091033
    Abstract: There is described a method for determining a refractive index of a medium. The method generally has providing a substrate having a surface, the surface having a first surface portion and a second surface portion spaced-apart from the first surface portion and recessed of a depth relative to the first surface portion; receiving the medium at least on the second surface portion; propagating a first optical beam towards the first surface portion and a second optical beam towards the second surface portion; collecting the first and second optical beams after said propagating and generating first and second signals being indicative of a phase of a respective one of the first and second collected optical beams; and determining a refractive index of said medium based on the first and second signals, the depth, a wavelength associated to the first and second optical beams and a refractive index of the substrate.
    Type: Application
    Filed: January 30, 2020
    Publication date: March 24, 2022
    Inventors: Érik BELANGER, Pierre MARQUET, Bertrand DE DORLODOT, Réal VALLÉE
  • Publication number: 20210181417
    Abstract: Mid-infrared-transparent optical fiber products with enhanced resistance to OH diffusion are disclosed, which may be used fiber laser oscillator and amplifiers systems. In one embodiment, an optical fiber product may include optical fiber configured for propagation of mid-infrared radiation toward a light-radiating endface of or coupled to the optical fiber, and a diffusion barrier disposed on the light-radiating endface and configured for allowing the mid-infrared radiation emanating from the light-radiating endface to pass therethrough and for preventing OH diffusion therethrough toward the light-radiating endface.
    Type: Application
    Filed: July 2, 2020
    Publication date: June 17, 2021
    Applicant: Université Laval
    Inventors: Martin BERNIER, Réal VALLÉE, Souleymane TOUBOU BAH, Vincent FORTIN, Frédéric MAES, Yigit Ozan AYDIN
  • Patent number: 10845533
    Abstract: An optical fiber having a Bragg grating along a non-photosensitized grating region thereof and a pristine polymer coating around the grating region with the Bragg grating having been written through the polymer coating has a mechanical resistance that is greater than 20% of the mechanical resistance of an identical grating-free optical fiber.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: November 24, 2020
    Assignee: UNIVERSITÉ LAVAL
    Inventors: Martin Bernier, Réal Vallée, François Trépanier, Julien Carrier
  • Publication number: 20190137685
    Abstract: An optical fiber having a Bragg grating along a non-photosensitized grating region thereof and a pristine polymer coating around the grating region with the Bragg grating having been written through the polymer coating has a mechanical resistance that is greater than 20% of the mechanical resistance of an identical grating-free optical fiber.
    Type: Application
    Filed: October 26, 2018
    Publication date: May 9, 2019
    Inventors: Martin Bernier, Réal Vallée, François Trépanier, Julien Carrier
  • Patent number: 10132994
    Abstract: Methods and systems for writing a Bragg grating along a grating region of an optical fiber through a polymer coating of the optical fiber are provided. A light beam of ultrafast optical pulses is impinged on the grating region, the ultrafast optical pulses being characterized by writing wavelength at the grating region to which the polymer coating is substantially transparent The light beam is diffracted through a phase mask so as to form an interference pattern defining the Bragg grating at the grating region of the optical fiber. The light beam is also focussed such that the intensity of the optical pulses is below a damage threshold within the polymer coating, and above an FBG inscription threshold within the grating region of the fiber. Optical fiber having Bragg gratings and improved mechanical are also provided.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: November 20, 2018
    Assignee: Universite Laval
    Inventors: Martin Bernier, Réal Vallée, François Trépanier, Julien Carrier
  • Patent number: 10084287
    Abstract: The mid-infrared laser system has an amplifier including at least one pump laser adapted to generate a pump laser beam and a length of fiber made of a low phonon energy glass and having at least one laser-active doped region between a first end and a second end, and a seed laser to generate a seed laser beam having a seed optical spectrum in the mid-infrared. The seed laser beam is launched into the first end to generate a mid-infrared laser beam outputted from the second end via stimulated emission upon pumping of the at least one laser-active doped region with the pump laser beam. When the power of the pump laser exceeds a spectrum modification threshold, the mid-infrared laser beam has an output optical spectrum being broadened relative to the seed optical spectrum.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: September 25, 2018
    Assignee: UNIVERSITÉ LAVAL
    Inventors: Martin Bernier, Réal Vallée, Vincent Fortin, Jean-Christophe Gauthier, Simon Duval
  • Publication number: 20180109078
    Abstract: The mid-infrared laser system has an amplifier including at least one pump laser adapted to generate a pump laser beam and a length of fiber made of a low phonon energy glass and having at least one laser-active doped region between a first end and a second end, and a seed laser to generate a seed laser beam having a seed optical spectrum in the mid-infrared. The seed laser beam is launched into the first end to generate a mid-infrared laser beam outputted from the second end via stimulated emission upon pumping of the at least one laser-active doped region with the pump laser beam. When the power of the pump laser exceeds a spectrum modification threshold, the mid-infrared laser beam has an output optical spectrum being broadened relative to the seed optical spectrum.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 19, 2018
    Inventors: Martin BERNIER, Réal VALLÉE, Vincent FORTIN, Jean-Christophe GAUTHIER, Simon DUVAL
  • Patent number: 9625713
    Abstract: A method for the laser reinforced direct bonding of two optical components having a respective bonding surface and a reinforced optical assembly made thereby are provided. The method includes a first step of assembling the two optical components by direct bonding of their respective bonding surface together, thereby defining a direct-bonded interface therebetween. The method further includes a second step of reinforcing the direct-bonded interface with a weld seam including at least one substantially continuous reinforcing weld line forming a closed shape enclosing a sealed direct-bonded region. Each weld line is inscribed by focusing ultrashort laser pulses at the direct-bonding interface so as to generate non-linear optical phenomena inducing a localized junction between the two optical components.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: April 18, 2017
    Assignee: Université Laval
    Inventors: David Helie, Réal Vallee, Fabrice Lacroix
  • Publication number: 20170031090
    Abstract: Methods and systems for writing a Bragg grating along a grating region of an optical fiber through a polymer coating of the optical fiber are provided. A light beam of ultrafast optical pulses is impinged on the grating region, the ultrafast optical pulses being characterised by writing wavelength at the grating region to which the polymer coating is substantially transparent The light beam is diffracted through a phase mask so as to form an interference pattern defining the Bragg grating at the grating region of the optical fiber. The light beam is also focussed such that the intensity of the optical pulses is below a damage threshold within the polymer coating, and above an FBG inscription threshold within the grating region of the fiber. Optical fiber having Bragg gratings and improved mechanical are also provided.
    Type: Application
    Filed: April 2, 2015
    Publication date: February 2, 2017
    Inventors: Martin Bernier, Réal Vallée, François Trépanier, Julien Carrier
  • Patent number: 8737780
    Abstract: A method for writing a Bragg grating in a glass optical waveguide is provided. Ultrafast optical pulses are generated, preferably in the femtosecond range and having a writing wavelength in the range of 300 nm to 700 nm and an intensity sufficient to induce a change of refractive index in the waveguide through densification. The optical pulses are diffracted using a phase mask, to generate an interference pattern having a pitch providing a fundamental Bragg resonance corresponding to the target wavelength to be reflected by the grating. The interference pattern is impinged on a region of the waveguide, which is heated to a temperature above a threshold and for a predetermined heating period. Advantageously, the heating step allows the reduction of photoinduced losses which would otherwise be present in the waveguiding properties of the waveguide. Optionally, gratings may be written through the polymer jacket of an optical fiber.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: May 27, 2014
    Assignee: Université Laval
    Inventors: Real Vallee, Martin Bernier
  • Publication number: 20130344302
    Abstract: A method for the laser reinforced direct bonding of two optical components having a respective bonding surface and a reinforced optical assembly made thereby are provided. The method includes a first step of assembling the two optical components by direct bonding of their respective bonding surface together, thereby defining a direct-bonded interface therebetween. The method further includes a second step of reinforcing the direct-bonded interface with a weld seam including at least one substantially continuous reinforcing weld line forming a dosed shape enclosing a sealed direct-bonded region. Each weld line is inscribed by focusing ultrashort laser pulses at the direct-bonding interface so as to generate non-linear optical phenomena inducing a localized junction between the two optical components.
    Type: Application
    Filed: January 10, 2012
    Publication date: December 26, 2013
    Inventors: David Hélie, Réal Vallée, Fabrice Lacroix
  • Patent number: 8515224
    Abstract: A method for writing a Bragg grating in a rare-earth doped glass optical waveguide is provided. Ultrafast optical pulses are generated, preferably in the femtosecond range and having a writing wavelength in the range of 300 nm to 700 nm and an intensity sufficient to induce a change of refractive index in the rare-earth doped glass waveguide through densification. The optical pulses are diffracted using a phase mask, to generate an interference pattern having a pitch providing a fundamental Bragg resonance corresponding to the target wavelength to be reflected by the grating. The interference pattern is impinged on a region of the rare-earth doped glass waveguide, which is heated to a temperature above a threshold of about 350° C., for a predetermined heating period. Advantageously, the heating step allows the elimination of photodarkening effects which would otherwise be present in the waveguiding properties of the waveguide.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: August 20, 2013
    Assignee: Universite Laval
    Inventors: Real Vallee, Martin Bernier
  • Publication number: 20130147071
    Abstract: A method for writing a Bragg grating in a glass optical waveguide is provided. Ultrafast optical pulses are generated, preferably in the femtosecond range and having a writing wavelength in the range of 300 nm to 700 nm and an intensity sufficient to induce a change of refractive index in the waveguide through densification. The optical pulses are diffracted using a phase mask, to generate an interference pattern having a pitch providing a fundamental Bragg resonance corresponding to the target wavelength to be reflected by the grating. The interference pattern is impinged on a region of the waveguide, which is heated to a temperature above a threshold and for a predetermined heating period. Advantageously, the heating step allows the reduction of photoinduced losses which would otherwise be present in the waveguiding properties of the waveguide. Optionally, gratings may be written through the polymer jacket of an optical fiber.
    Type: Application
    Filed: June 15, 2012
    Publication date: June 13, 2013
    Applicant: UNIVERSITE LAVAL
    Inventors: Real Vallee, Martin Bernier
  • Publication number: 20120128301
    Abstract: A method for writing a Bragg grating in a rare-earth doped glass optical waveguide is provided. Ultrafast optical pulses are generated, preferably in the femtosecond range and having a writing wavelength in the range of 300 nm to 700 nm and an intensity sufficient to induce a change of refractive index in the rare-earth doped glass waveguide through densification. The optical pulses are diffracted using a phase mask, to generate an interference pattern having a pitch providing a fundamental Bragg resonance corresponding to the target wavelength to be reflected by the grating. The interference pattern is impinged on a region of the rare-earth doped glass waveguide, which is heated to a temperature above a threshold of about 350° C., for a predetermined heating period. Advantageously, the heating step allows the elimination of photodarkening effects which would otherwise be present in the waveguiding properties of the waveguide.
    Type: Application
    Filed: July 29, 2010
    Publication date: May 24, 2012
    Applicant: UNIVERSITE LAVAL
    Inventors: Real Vallee, Martin Bernier
  • Patent number: 8078023
    Abstract: A system and method for permanently writing diffraction gratings in low phonon energy glass waveguides are shown. Ultrashort light pulses are generated and made to form two beams synchronously superimposed in the waveguide, therefore forming an interference pattern corresponding to the desired grating. The light pulses are focussed so that the light intensity in the waveguide exceeds a filamentation threshold. The exposure of the waveguide to these light pulses is controlled temporally and spatially in order to limit detrimental thermal effects induced by the high-intensity pulses in the glass medium of the waveguide.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 13, 2011
    Assignee: Universite Laval
    Inventors: Real Vallee, Martin Bernier, Dominic Faucher
  • Publication number: 20090274420
    Abstract: A system and method for permanently writing diffraction gratings in low phonon energy glass waveguides are shown. Ultrashort light pulses are generated and made to form two beams synchronously superimposed in the waveguide, therefore forming an interference pattern corresponding to the desired grating. The light pulses are focussed so that the light intensity in the waveguide exceeds a filamentation threshold. The exposure of the waveguide to these light pulses is controlled temporally and spatially in order to limit detrimental thermal effects induced by the high-intensity pulses in the glass medium of the waveguide.
    Type: Application
    Filed: September 28, 2007
    Publication date: November 5, 2009
    Applicant: UNIVERSITE LAVAL
    Inventors: Real Vallee, Martin Bernier, Dominic Faucher
  • Publication number: 20070107618
    Abstract: An optical mine clearance probe comprising a handle that is extended through a rod having a geometrical axis and adapted to be driven into a soil to search through it and including a first tubular part, a second part consisting of a movable rod end part including slots adapted to constitute at least two sectors and a mechanism capable of displacing the movable rod end between two extreme positions. One of the positions being one where a part of the rod end constitutes an extremity of the probe, the at least two sectors being adjacent one another in pairs and defining a conical member ending with a tip, and the other position being one in which extremities of the at least two sectors are spread apart from one another, the rod end then being of tubular shape.
    Type: Application
    Filed: August 31, 2006
    Publication date: May 17, 2007
    Inventors: Fabrice Lacroix, Real Vallee