Patents by Inventor R. Andrew McGill

R. Andrew McGill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240075459
    Abstract: The present invention provides a method of making an adsorbent material for protection and sensing applications from gas and liquid phase media by grafting sorbent moieties onto a rigid scaffold. The grafting can be to an organic linker of a metal organic framework by post synthetic modification, to the metal nodes of the metal organic framework via ligand displacement, or by intercalating the sorbent moiety into the pores of the metal organic framework either during formation of the scaffold or by diffusion into the pores after the scaffold is formed.
    Type: Application
    Filed: September 1, 2023
    Publication date: March 7, 2024
    Inventors: Christopher Breshike, R. Andrew McGill, Courtney Roberts, Thomas Cao, Daniel A. Corbin
  • Patent number: 11779901
    Abstract: The invention relates to strong hydrogen-bond acidic sorbents. The sorbents may be provided in a form that limits or eliminates intramolecular bonding of the hydrogen-bond acidic site between neighboring sorbent molecules, for example, by providing steric groups adjacent to the hydrogen-bond acidic site. The hydrogen bond site may be a phenolic structure based on a bisphenol architecture. The sorbents of the invention may be used in methods for trapping or detecting hazardous chemicals or explosives.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: October 10, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: R. Andrew McGill, Courtney A. Roberts
  • Patent number: 11738327
    Abstract: The invention relates to strong hydrogen-bond acidic sorbents. The sorbents may be provided in a form that limits or eliminates intramolecular bonding of the hydrogen-bond acidic site between neighboring sorbent molecules, for example, by providing steric groups adjacent to the hydrogen-bond acidic site. The hydrogen bond site may be a phenolic structure based on a bisphenol architecture. The sorbents of the invention may be used in methods for trapping or detecting hazardous chemicals or explosives.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: August 29, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: R. Andrew McGill, Courtney A. Roberts
  • Publication number: 20230221247
    Abstract: The present invention provides a method for spectroscopic imaging by illuminating a sample with a short infrared pulse, directing one or more probe beams to the sample, and measuring light that is reflected, transmitted, or re-emitted inelastically, where a spectrum is collocated by varying the wavelength of the infrared pulse and an image is collected by moving the sample and probe beam relative to each other as the steps are repeated multiple times to create a multidimensional spectroscopic image of the sample. Also disclosed are the related methods for analyzing the data and the related system for spectroscopic imaging.
    Type: Application
    Filed: January 12, 2023
    Publication date: July 13, 2023
    Inventors: Tyler Huffman, Robert Furstenberg, Chris Kendziora, R. Andrew McGill
  • Patent number: 11692982
    Abstract: Presented herein is a new concept of uniformly spin coating a flat surface with a stationary phase and creating a gas chromatography column by pressing a grooved lid, with micro-stamped ridges, down onto the coated substrate. The lids are molded out of commercially available rigid materials including epoxies so that when pressed onto a flat surface it will create an air tight seal. The epoxy material is rendered inert by a thin layer of gold.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: July 4, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Robert Furstenberg, Christopher Breshike, Todd H. Stievater, Dmitry Kozak, R. Andrew McGill
  • Patent number: 11654415
    Abstract: The invention relates to strong hydrogen-bond acidic sorbents. The sorbents may be provided in a form that limits or eliminates intramolecular bonding of the hydrogen-bond acidic site between neighboring sorbent molecules, for example, by providing steric groups adjacent to the hydrogen-bond acidic site. The hydrogen bond site may be a phenolic structure based on a bisphenol architecture. The sorbents of the invention may be used in methods for trapping or detecting hazardous chemicals or explosives.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: May 23, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: R. Andrew McGill, Courtney A. Roberts
  • Patent number: 11648529
    Abstract: The invention relates to strong hydrogen-bond acidic sorbents. The sorbents may be provided in a form that limits or eliminates intramolecular bonding of the hydrogen-bond acidic site between neighboring sorbent molecules, for example, by providing steric groups adjacent to the hydrogen-bond acidic site. The hydrogen bond site may be a phenolic structure based on a bisphenol architecture. The sorbents of the invention may be used in methods for trapping or detecting hazardous chemicals or explosives.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: May 16, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: R. Andrew McGill, Courtney A. Roberts
  • Patent number: 11465179
    Abstract: This application relates generally to a method and apparatus to deposit particles onto one or more coupons, and harvest particles from one or more coupons, which may beneficially provide a more uniform or localized distribution of particles over a specified area on each coupon. The application relates to a method and apparatus for depositing particles onto one or more coupons using a sieve. The application also relates to a method and apparatus for depositing particles onto one or more coupons using a dust storm. The particle loadings achieved on each coupon or across an individual coupon may be substantially uniform. The application further relates to a laser-based method and apparatus for transferring particles deposited at localized points on a source coupon to a different substrate for further use.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: October 11, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Robert Furstenberg, Thomas Fischer, Viet K. Nguyen, R. Andrew McGill, Chris Kendziora, Michael Papantonakis
  • Publication number: 20220258125
    Abstract: The invention relates to strong hydrogen-bond acidic sorbents. The sorbents may be provided in a form that limits or eliminates intramolecular bonding of the hydrogen-bond acidic site between neighboring sorbent molecules, for example, by providing steric groups adjacent to the hydrogen-bond acidic site. The hydrogen bond site may be a phenolic structure based on a bisphenol architecture. The sorbents of the invention may be used in methods for trapping or detecting hazardous chemicals or explosives.
    Type: Application
    Filed: April 21, 2022
    Publication date: August 18, 2022
    Inventors: R. Andrew McGill, Courtney A. Roberts
  • Publication number: 20220258126
    Abstract: The invention relates to strong hydrogen-bond acidic sorbents. The sorbents may be provided in a form that limits or eliminates intramolecular bonding of the hydrogen-bond acidic site between neighboring sorbent molecules, for example, by providing steric groups adjacent to the hydrogen-bond acidic site. The hydrogen bond site may be a phenolic structure based on a bisphenol architecture. The sorbents of the invention may be used in methods for trapping or detecting hazardous chemicals or explosives.
    Type: Application
    Filed: April 21, 2022
    Publication date: August 18, 2022
    Inventors: R. Andrew McGill, Courtney A. Roberts
  • Publication number: 20220250032
    Abstract: The invention relates to strong hydrogen-bond acidic sorbents. The sorbents may be provided in a form that limits or eliminates intramolecular bonding of the hydrogen-bond acidic site between neighboring sorbent molecules, for example, by providing steric groups adjacent to the hydrogen-bond acidic site. The hydrogen bond site may be a phenolic structure based on a bisphenol architecture. The sorbents of the invention may be used in methods for trapping or detecting hazardous chemicals or explosives.
    Type: Application
    Filed: April 21, 2022
    Publication date: August 11, 2022
    Inventors: R. Andrew McGill, Courtney A. Roberts
  • Publication number: 20220241750
    Abstract: The invention relates to strong hydrogen-bond acidic sorbents. The sorbents may be provided in a form that limits or eliminates intramolecular bonding of the hydrogen-bond acidic site between neighboring sorbent molecules, for example, by providing steric groups adjacent to the hydrogen-bond acidic site. The hydrogen bond site may be a phenolic structure based on a bisphenol architecture. The sorbents of the invention may be used in methods for trapping or detecting hazardous chemicals or explosives.
    Type: Application
    Filed: April 21, 2022
    Publication date: August 4, 2022
    Inventors: R. Andrew McGill, Courtney A. Roberts
  • Patent number: 11325100
    Abstract: The invention relates to strong hydrogen-bond acidic sorbents. The sorbents may be provided in a form that limits or eliminates intramolecular bonding of the hydrogen-bond acidic site between neighboring sorbent molecules, for example, by providing steric groups adjacent to the hydrogen-bond acidic site. The hydrogen bond site may be a phenolic structure based on a bisphenol architecture. The sorbents of the invention may be used in methods for trapping or detecting hazardous chemicals or explosives.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: May 10, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Courtney A. Roberts, R. Andrew McGill
  • Patent number: 11262241
    Abstract: A photo-thermal speckle spectroscopy device having an infrared laser, a visible laser, a foam, and a camera. The infrared and visible lasers are focused on the foam, which causes the visible laser to scatter. A camera records the speckle pattern, which shifts when the IR laser is turned on. The related method of photo-thermal speckle spectroscopy is also disclosed.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: March 1, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Robert Furstenberg, Chris Kendziora, R. Andrew McGill
  • Patent number: 10928311
    Abstract: A method and system for rapid, label free nanoscale chemical imaging and tomography (3D) with multiplexing for speed, and engineered coherent illumination and detection to achieve 3-D resolution at twice the Abbe limit. A sample undergoes photo-thermal heating using a modulated infrared light source and the resulting probe beam modulation is measured with one or more visible laser probes. Varying the infrared wavelength results in a spectrum which characterizes the chemical composition of the sample. Optionally, inelastically scattered light generated as a result of the probe beam interacting with the sample is collected simultaneously to yield additional chemical information.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: February 23, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Robert Furstenberg, Tyler Huffman, Chris Kendziora, R. Andrew McGill
  • Publication number: 20200363264
    Abstract: A photo-thermal speckle spectroscopy device having an infrared laser, a visible laser, a foam, and a camera. The infrared and visible lasers are focused on the foam, which causes the visible laser to scatter. A camera records the speckle pattern, which shifts when the IR laser is turned on. The related method of photo-thermal speckle spectroscopy is also disclosed.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Robert Furstenberg, Chris Kendziora, R. Andrew McGill
  • Publication number: 20200355652
    Abstract: Presented herein is a new concept of uniformly spin coating a flat surface with a stationary phase and creating a gas chromatography column by pressing a grooved lid, with micro-stamped ridges, down onto the coated substrate. The lids are molded out of commercially available rigid materials including epoxies so that when pressed onto a flat surface it will create an air tight seal. The epoxy material is rendered inert by a thin layer of gold.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 12, 2020
    Inventors: Robert Furstenberg, Christopher Breshike, Todd H. Stievater, Dmitry Kozak, R. Andrew McGill
  • Patent number: 10690933
    Abstract: A speckle reduction instrument having a parabolic reflector and flat mirror to form a cavity-based unit. Laser light is collected and bounced around the cavity hitting a diffuser surface multiple times. The laser light that is highly coherent is converted into less-coherent but still bright light suitable for illumination in microscopes and other devices. Also disclosed is the related method for reducing speckle.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: June 23, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Robert Furstenberg, Chris Kendziora, R. Andrew McGill
  • Publication number: 20190360900
    Abstract: This application relates generally to a method and apparatus to deposit particles onto one or more coupons, and harvest particles from one or more coupons, which may beneficially provide a more uniform or localized distribution of particles over a specified area on each coupon. The application relates to a method and apparatus for depositing particles onto one or more coupons using a sieve. The application also relates to a method and apparatus for depositing particles onto one or more coupons using a dust storm. The particle loadings achieved on each coupon or across an individual coupon may be substantially uniform. The application further relates to a laser-based method and apparatus for transferring particles deposited at localized points on a source coupon to a different substrate for further use.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 28, 2019
    Inventors: Robert Furstenberg, Thomas Fischer, Viet K. Nguyen, R. Andrew McGill, Chris Kendziora, Michael Papantonakis
  • Publication number: 20190317012
    Abstract: A method and system for rapid, label free nanoscale chemical imaging and tomography (3D) with multiplexing for speed, and engineered coherent illumination and detection to achieve 3-D resolution at twice the Abbe limit. A sample undergoes photo-thermal heating using a modulated infrared light source and the resulting probe beam modulation is measured with one or more visible laser probes. Varying the infrared wavelength results in a spectrum which characterizes the chemical composition of the sample. Optionally, inelastically scattered light generated as a result of the probe beam interacting with the sample is collected simultaneously to yield additional chemical information.
    Type: Application
    Filed: April 12, 2019
    Publication date: October 17, 2019
    Inventors: Robert Furstenberg, Tyler Huffman, Chris Kendziora, R. Andrew McGill