Patents by Inventor R. Balaji Sunil KUMAR

R. Balaji Sunil KUMAR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230311934
    Abstract: Disclosed herein is method and a navigation system for dynamically controlling navigation of an autonomous vehicle. In an embodiment, method comprises determining a trajectory path, comprising a plurality of path segments including at least one curved path segment and a straight path segment, by adjusting a plurality of waypoints in a base route of the autonomous vehicle and joining the plurality of waypoints using a predefined path planning model. Thereafter, a velocity profile distribution is generated for the autonomous vehicle by determining a start terminal velocity, an end terminal velocity and acceleration of the autonomous vehicle through each of the plurality of path segments in the trajectory path. Finally, a dynamic motion command is determined and applied to the autonomous vehicle based on the velocity profile distribution for dynamically controlling the navigation of the autonomous vehicle.
    Type: Application
    Filed: June 1, 2022
    Publication date: October 5, 2023
    Inventors: Ashwini RATNOO, Manas SARKAR, R. Balaji Sunil KUMAR
  • Patent number: 11474203
    Abstract: Disclosed herein is method and system for determining correctness of Lidar sensor data used for localizing autonomous vehicle. The system identifies one or more Region of Interests (ROIs) in Field of View (FOV) of Lidar sensors of autonomous vehicle along a navigation path. Each ROI includes one or more objects. Further, for each ROI, system obtains Lidar sensor data comprising one or more reflection points corresponding to the one or more objects. The system forms one or more clusters in each ROI. The system identifies a distance value between, one or more clusters projected on 2D map of environment and corresponding navigation map obstacle points, for each ROI. The system compares distance value between one or more clusters and obstacle points based on which correctness of Lidar sensor data is determined. In this manner, present disclosure provides a mechanism to detect correctness of Lidar sensor data for navigation in real-time.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: October 18, 2022
    Assignee: Wipro Limited
    Inventors: R. Balaji Sunil Kumar, Manas Sarkar
  • Publication number: 20220019223
    Abstract: This disclosure relates to method and system for dynamically determining and seamlessly switching trajectory planner (TP) for an Autonomous Ground Vehicle (AGV). The method includes determining a derived mission at a current position of the AGV along a global path based on static environment data from a navigation map and dynamic environment data acquired by the AGV. Further, the method includes identifying one or more potential TPs from a plurality of TPs based on the derived mission. Further, the method includes calculating a weighted suitability score for each of the one or more potential TPs based on a set of TP evaluation parameters. Further, the method includes determining a new TP from the one or more potential TPs to achieve the derived mission based on the weighted suitability score for each of the one or more potential TPs and a simulated evaluation of the new TP.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 20, 2022
    Inventors: R. Balaji Sunil KUMAR, Manas SARKAR
  • Patent number: 11173893
    Abstract: This disclosure relates to method and system for detecting and compensating for mechanical fault in autonomous ground vehicle (AGV). For each of a set of trajectory plan segments along a base path during real-time navigation of the AGV, the method may include receiving a plurality of vehicle displacement parameters along a given trajectory plan segment. and determining an optimal velocity twist of the AGV in the given trajectory plan segment using an artificial intelligence (AI) model, based on the plurality of vehicle displacement parameters and a weight of the AGV. The method may further include determining the mechanical fault in the AGV based on a comparison of an actual velocity twist of the AGV in the given trajectory plan segment and the optimal velocity twist of the AGV in the given trajectory plan segment for each of the set of trajectory plan segments.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: November 16, 2021
    Assignee: Wipro Limited
    Inventors: R. Balaji Sunil Kumar, Manas Sarkar
  • Publication number: 20210146913
    Abstract: This disclosure relates to method and system for detecting and compensating for mechanical fault in autonomous ground vehicle (AGV). For each of a set of trajectory plan segments along a base path during real-time navigation of the AGV, the method may include receiving a plurality of vehicle displacement parameters along a given trajectory plan segment. and determining an optimal velocity twist of the AGV in the given trajectory plan segment using an artificial intelligence (AI) model, based on the plurality of vehicle displacement parameters and a weight of the AGV. The method may further include determining the mechanical fault in the AGV based on a comparison of an actual velocity twist of the AGV in the given trajectory plan segment and the optimal velocity twist of the AGV in the given trajectory plan segment for each of the set of trajectory plan segments.
    Type: Application
    Filed: December 30, 2019
    Publication date: May 20, 2021
    Inventors: R. Balaji Sunil KUMAR, Manas SARKAR
  • Publication number: 20210096220
    Abstract: Disclosed herein is method and system for determining correctness of Lidar sensor data used for localizing autonomous vehicle. The system identifies one or more Region of Interests (ROIs) in Field of View (FOV) of Lidar sensors of autonomous vehicle along a navigation path. Each ROI includes one or more objects. Further, for each ROI, system obtains Lidar sensor data comprising one or more reflection points corresponding to the one or more objects. The system forms one or more clusters in each ROI. The system identifies a distance value between, one or more clusters projected on 2D map of environment and corresponding navigation map obstacle points, for each ROI. The system compares distance value between one or more clusters and obstacle points based on which correctness of Lidar sensor data is determined. In this manner, present disclosure provides a mechanism to detect correctness of Lidar sensor data for navigation in real-time.
    Type: Application
    Filed: November 26, 2019
    Publication date: April 1, 2021
    Inventors: R. Balaji Sunil KUMAR, Manas SARKAR