Patents by Inventor R. Stewart Nielson

R. Stewart Nielson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11079528
    Abstract: A method of making a polarizer can include applying a liquid with solid inorganic nanoparticles dispersed throughout a continuous phase, then forming this into a different phase including a solid, interconnecting network of the inorganic nanoparticles. This method can improve manufacturability and reducing manufacturing cost. This method can be used to provide an antireflective coating, to provide a protective coating on polarization structures, to provide thin films for optical properties, or to form the polarization structures themselves.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: August 3, 2021
    Assignee: Moxtek, Inc.
    Inventors: Bradley R. Williams, R. Stewart Nielson, Anubhav Diwan, Eric Gardner, Shaun Patrick Ogden, Bob West
  • Publication number: 20210223450
    Abstract: A method for making a wire grid polarizer (WGP) can provide WGPs with high temperature resistance, robust wires, oxidation resistance, and corrosion protection. In one embodiment, the method can comprise: (a) providing an array of wires on a bottom protection layer; (b) applying a top protection layer on the wires, spanning channels between wires; then (c) applying an upper barrier-layer on the top protection layer and into the channels through permeable junctions in the top protection layer. In a variation of this embodiment, the method can further comprise applying a lower barrier-layer before applying the top protection layer. In another variation, the bottom protection layer and the top protection layer can include aluminum oxide. In another embodiment, the method can comprise applying on the WGP an amino phosphonate then a hydrophobic chemical.
    Type: Application
    Filed: April 1, 2021
    Publication date: July 22, 2021
    Inventors: R. Stewart Nielson, Matthew C. George, Shaun Ogden, Brian Bowers
  • Patent number: 11002899
    Abstract: A method for making a wire grid polarizer (WGP) can provide WGPs with high temperature resistance, robust wires, oxidation resistance, and corrosion protection. In one embodiment, the method can comprise: (a) providing an array of wires on a bottom protection layer; (b) applying a top protection layer on the wires, spanning channels between wires; then (c) applying an upper barrier-layer on the top protection layer and into the channels through permeable junctions in the top protection layer. In a variation of this embodiment, the method can further comprise applying a lower barrier-layer before applying the top protection layer. In another variation, the bottom protection layer and the top protection layer can include aluminum oxide. In another embodiment, the method can comprise applying on the WGP an amino phosphonate then a hydrophobic chemical.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: May 11, 2021
    Assignee: Moxtek, Inc.
    Inventors: R. Stewart Nielson, Matthew C. George, Shaun Ogden, Brian Bowers
  • Publication number: 20210063622
    Abstract: A wire grid polarizer (WGP) can include an array of support-ribs on a substrate. Sides of the support-ribs can be inclined to one side. A wire can be applied on an upper-side and distal end of each support-rib, each wire being separate from wires on adjacent support-ribs. The WGP can be made with reduced or no etching.
    Type: Application
    Filed: August 13, 2020
    Publication date: March 4, 2021
    Inventors: R. Stewart Nielson, Bradley R. Williams, Bob West
  • Publication number: 20210063623
    Abstract: An optical device can comprise wires 12 on a face of a substrate 11, with channel(s) 13 between adjacent wires 12. Each wire 12 can include embedded organic moieties. Each wire 12 can include multiple ribs 31. Part or all of the wire 12, the substrate 11, or both can have a high refractive index n and a low extinction coefficient k. The optical device can have reduced separation of layers of different materials during flexing and temperature changes. The optical device can be manufactured by a method designed for improved manufacturability.
    Type: Application
    Filed: August 13, 2020
    Publication date: March 4, 2021
    Inventors: Anubhav Diwan, Bradley R. Williams, R. Stewart Nielson
  • Publication number: 20210033767
    Abstract: It would be advantageous to improve polarizer high temperature resistance, corrosion resistance, oxidation resistance, optical properties, and etchability. Composite polarizer materials can be used to achieve this. A polarizer can comprise polarization structures configured for polarization of light. The polarization structures can include a reflective rib, the reflective rib being a composite of two different elements. The polarization structures can include an absorptive rib, the absorptive rib being a composite of two different elements. The polarizer can include a transparent layer, the transparent layer being a composite of two different elements.
    Type: Application
    Filed: July 15, 2020
    Publication date: February 4, 2021
    Inventor: R. Stewart Nielson
  • Publication number: 20210018670
    Abstract: Each wire of a wire grid polarizer (WGP) can include the following layers moving outwards from the substrate: a high-index-layer, a low-index-layer, and a reflective-layer. Each wire can have a distal-end, farthest from the substrate, with a convex shape. These layers and the convex shape can be combined for a more stable and improved Rs.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 21, 2021
    Inventors: R. Stewart Nielson, Bradley R. Williams
  • Publication number: 20210018669
    Abstract: A reflective wire grid polarizer (WGP) can include an array of wires 12 on a face of a substrate 11, with channels 15 between adjacent wires 12. The wires 12 can have certain characteristics for WGP performance, such as index of refraction, alternating high/low index continuous thin films, thickness of layer(s), duty cycle, reflective rib shape, a curved side of transparent ribs 21 or 32, aspect ratio, or combinations thereof.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 21, 2021
    Inventors: Daniel Bacon-Brown, Michael Black, R. Stewart Nielson, Bradley R. Williams, Benjamin Downard, Jeffrey H. Rice, Jim Pierce
  • Patent number: 10656309
    Abstract: A wire grid polarizer (WGP) can be durable and have high performance. The WGP can comprise an array of wires 13 on a substrate 11. An overcoat layer 32 can be located at distal ends of the array of wires 13 and can span channels 15 between the wires 13. A conformal-coat layer 61 can coat sides 13s and distal ends 13d of the wires 13 between the wires 13 and the overcoat layer 32. The overcoat layer can comprise aluminum oxide. An antireflection layer 33 can be located over the overcoat layer 32.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: May 19, 2020
    Assignee: Moxtek, Inc.
    Inventors: R. Stewart Nielson, Bradley R. Williams, Mathew Free, Ted Wangensteen
  • Patent number: 10571614
    Abstract: A wire grid polarizer (WGP) can include a heat-dissipation layer. The heat-dissipation layer can enable the WGP to be able to endure high temperatures. The heat-dissipation layer can be located (a) over an array of wires and farther from a transparent substrate than the array of wires; or (b) between the array of wires and the transparent substrate. The heat-dissipation layer can be a continuous layer. The heat-dissipation layer can have a high electrical resistivity and a high coefficient of thermal conductivity.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: February 25, 2020
    Assignee: Moxek, Inc.
    Inventors: R. Stewart Nielson, Shaun Ogden, Mathew Free, Bradley R. Williams, Fred Lane, Ted Wangensteen, Matthew C. George
  • Patent number: 10534120
    Abstract: A wire grid polarizer and method of making a wire grid polarizer can protect delicate wires of the wire grid polarizer from damage. The wire grid polarizer can include a protective-layer located on an array of wires. The array of wires can further be protected by a chemical coating on an inside surface of the air-filled channels, closed ends of the air-filled channels, damaged wires of the array of wires in a line parallel to an edge of the wire grid polarizer, or combinations thereof. The method can include (i) providing the wire grid polarizer, (ii) applying the protective-layer, by physical vapor deposition or chemical vapor deposition but excluding atomic layer deposition, onto the array of wires, (iii) cutting the wire grid polarizer wafer into multiple wire grid polarizer parts, then (iv) protecting the array of wires.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: January 14, 2020
    Assignee: Moxtek, Inc.
    Inventors: R. Stewart Nielson, Mathew Free, Bradley R. Williams, Matthew R. Linford, Anubhav Diwan, Fred Lane, Shaun Ogden
  • Publication number: 20190391299
    Abstract: A wire grid polarizer (WGP) can be durable and have high performance. The WGP can comprise an array of wires 13 on a substrate 11. An overcoat layer 32 can be located at distal ends of the array of wires 13 and can span channels 15 between the wires 13. A conformal-coat layer 61 can coat sides 13s and distal ends 13d of the wires 13 between the wires 13 and the overcoat layer 32. The overcoat layer can comprise aluminum oxide. An antireflection layer 33 can be located over the overcoat layer 32.
    Type: Application
    Filed: August 30, 2019
    Publication date: December 26, 2019
    Inventors: R. Stewart Nielson, Bradley R. Williams, Mathew Free, Ted Wangensteen
  • Publication number: 20190346608
    Abstract: A method for making a wire grid polarizer (WGP) can provide WGPs with high temperature resistance, robust wires, oxidation resistance, and corrosion protection. In one embodiment, the method can comprise: (a) providing an array of wires on a bottom protection layer; (b) applying a top protection layer on the wires, spanning channels between wires; then (c) applying an upper barrier-layer on the top protection layer and into the channels through permeable junctions in the top protection layer. In a variation of this embodiment, the method can further comprise applying a lower barrier-layer before applying the top protection layer. In another variation, the bottom protection layer and the top protection layer can include aluminum oxide. In another embodiment, the method can comprise applying on the WGP an amino phosphonate then a hydrophobic chemical.
    Type: Application
    Filed: July 23, 2019
    Publication date: November 14, 2019
    Inventors: R. Stewart Nielson, Matthew C. George, Shaun Ogden, Brian Bowers
  • Publication number: 20190317260
    Abstract: A method of making a polarizer can include applying a liquid with solid inorganic nanoparticles dispersed throughout a continuous phase, then forming this into a different phase including a solid, interconnecting network of the inorganic nanoparticles. This method can improve manufacturability and reducing manufacturing cost. This method can be used to provide an antireflective coating, to provide a protective coating on polarization structures, to provide thin films for optical properties, or to form the polarization structures themselves.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 17, 2019
    Inventors: Bradley R. Williams, R. Stewart Nielson, Anubhav Diwan, Eric Gardner, Shaun Patrick Ogden, Bob West
  • Patent number: 10444410
    Abstract: A wire grid polarizer (WGP) can be durable and have high performance. The WGP can comprise an array of wires 13 on a substrate 11. An overcoat layer 32 can be located at distal ends of the array of wires 13 and can span channels 15 between the wires 13. A conformal-coat layer 61 can coat sides 13s and distal ends 13d of the wires 13 between the wires 13 and the overcoat layer 32. The overcoat layer can comprise aluminum oxide. An antireflection layer 33 can be located over the overcoat layer 32.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: October 15, 2019
    Assignee: Moxtek, Inc.
    Inventors: R. Stewart Nielson, Bradley R. Williams, Mathew Free, Ted Wangensteen
  • Patent number: 10408983
    Abstract: A method for making a wire grid polarizer (WGP) can provide WGPs with high temperature resistance, robust wires, oxidation resistance, and corrosion protection. In one embodiment, the method can comprise: (a) providing an array of wires on a bottom protection layer; (b) applying a top protection layer on the wires, spanning channels between wires; then (c) applying an upper barrier-layer on the top protection layer and into the channels through permeable junctions in the top protection layer. In a variation of this embodiment, the method can further comprise applying a lower barrier-layer before applying the top protection layer. In another variation, the bottom protection layer and the top protection layer can include aluminum oxide. In another embodiment, the method can comprise applying on the WGP an amino phosphonate then a hydrophobic chemical.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: September 10, 2019
    Assignee: Moxtek, Inc.
    Inventors: R. Stewart Nielson, Matthew C. George, Shaun Ogden, Brian Bowers
  • Patent number: 10310155
    Abstract: A wire grid polarizer (WGP) can have improved performance due to a high aspect ratio (e.g. >3, >5, >10, >15, >20, or >30), where aspect ratio equals T/W, T is a sum of a thickness of wires of the first array 11 plus a thickness of wires of the second array 12 (i.e. T=Th11+Th12), and W is a maximum width of wires of the first array 11 and/or of the second array 12. Such high aspect ratio can be achieved with two arrays of wires 11 and 12, each capped by a thin film 01 and 02.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: June 4, 2019
    Assignee: Moxtek, Inc.
    Inventors: R. Stewart Nielson, Shaun Ogden, Matt Free, Bin Wang, Hua Li, Brian Bowers
  • Patent number: 10302831
    Abstract: A wire grid polarizer (WGP) 10 can include a reflective layer 15 sandwiched on each side by a pair of transparent layers (11-12 and 13-14). An index of refraction of each outer transparent layer 11 or 14 can be greater than an index of refraction of the adjacent inner transparent layer 12 or 13, respectively. Material composition of the outer transparent layers 11 and 14 can be the same, material composition of the adjacent inner transparent layers 12 and 13 can be the same. There can be high reflection of one polarization (e.g. Rs1>93% and Rs2>93%) for light incident on either side of the WGP.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 28, 2019
    Assignee: Moxtek, Inc.
    Inventors: Bin Wang, Shaun Ogden, R. Stewart Nielson, Hua Li, Brian Bowers
  • Publication number: 20190049645
    Abstract: A wire grid polarizer (WGP) 10 can include a reflective layer 15 sandwiched on each side by a pair of transparent layers (11-12 and 13-14). An index of refraction of each outer transparent layer 11 or 14 can be greater than an index of refraction of the adjacent inner transparent layer 12 or 13, respectively. Material composition of the outer transparent layers 11 and 14 can be the same, material composition of the adjacent inner transparent layers 12 and 13 can be the same. There can be high reflection of one polarization (e.g. Rs1>93% and Rs2>93%) for light incident on either side of the WGP.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Bin Wang, Shaun Ogden, R. Stewart Nielson, Hua Li, Brian Bowers
  • Publication number: 20190049644
    Abstract: A wire grid polarizer (WGP) can have improved performance due to a high aspect ratio (e.g. >3, >5, >10, >15, >20, or >30), where aspect ratio equals T/W, T is a sum of a thickness of wires of the first array 11 plus a thickness of wires of the second array 12 (i.e. T=Th11+Th12), and W is a maximum width of wires of the first array 11 and/or of the second array 12. Such high aspect ratio can be achieved with two arrays of wires 11 and 12, each capped by a thin film 01 and 02.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: R. Stewart Nielson, Shaun Ogden, Matt Free, Bin Wang, Hua Li, Brian Bowers