Patents by Inventor Rached Ben-Mansour

Rached Ben-Mansour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180340108
    Abstract: A nanofluid composed of a base fluid and a solid nanocomposite particle, where the solid nanocomposite particle consists of a carbon nanotube and a metal oxide nanoparticle selected from the group consisting of Fe2O3, Al2O3, and CuO. The metal oxide nanoparticle is affixed inside of or to the outer surface of the carbon nanotube, and the solid nanocomposite particle is homogeneously dispersed in the base fluid. The heat transfer and specific heat capacity properties of the nanofluid are measured using differential scanning calorimetry and heat exchanger experiments with different nanocomposite concentrations and different metal oxide percent loadings.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 29, 2018
    Applicant: King Fahd University of Petroleum and Minerals
    Inventors: Muataz Ali Atieh, Abdallah Darweesh Manasrah, Usamah Ahmad Al-Mubaiyedh, Tahar Laoui, Rached Ben-Mansour
  • Patent number: 10138404
    Abstract: A nanofluid composed of a base fluid and a solid nanocomposite particle, where the solid nanocomposite particle consists of a carbon nanotube and a metal oxide nanoparticle selected from the group consisting of Fe2O3, Al2O3, and CuO. The metal oxide nanoparticle is affixed inside of or to the outer surface of the carbon nanotube, and the solid nanocomposite particle is homogeneously dispersed in the base fluid. The heat transfer and specific heat capacity properties of the nanofluid are measured using differential scanning calorimetry and heat exchanger experiments with different nanocomposite concentrations and different metal oxide percent loadings.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: November 27, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Muataz Ali Atieh, Abdallah Darweesh Manasrah, Usamah Ahmad Al-Mubaiyedh, Tahar Laoui, Rached Ben-Mansour
  • Publication number: 20180306433
    Abstract: A fire tube boiler system including a plurality of oxygen transport reactors that heats a working fluid. Each oxygen transport reactor has a first inner tube with an ion transport membrane that receives air from a first supply line, extracts oxygen from the air, and evacuate oxygen depleted air through a first exhaust line, a second inner tube that surrounds the first inner tube that receives the oxygen from the ion transport membrane and a mixture of fuel and carbon dioxide from a second supply line and produces a oxy-combustion, and an peripheral tube that surrounds the second inner tube and evacuates the exhaust gases produced by the oxy-combustion and transfer heat from exhaust gases to the working fluid and the ion transport membrane.
    Type: Application
    Filed: April 26, 2018
    Publication date: October 25, 2018
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mohamed Abdel-Aziz Habib, Rached BEN-MANSOUR
  • Patent number: 10077391
    Abstract: A nanofluid composed of a base fluid and a solid nanocomposite particle, where the solid nanocomposite particle consists of a carbon nanotube and a metal oxide nanoparticle selected from the group consisting of Fe2O3, Al2O3, and CuO. The metal oxide nanoparticle is affixed inside of or to the outer surface of the carbon nanotube, and the solid nanocomposite particle is homogeneously dispersed in the base fluid. The heat transfer and specific heat capacity properties of the nanofluid are measured using differential scanning calorimetry and heat exchanger experiments with different nanocomposite concentrations and different metal oxide percent loadings.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: September 18, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Muataz Ali Atieh, Abdallah Darweesh Manasrah, Usamah Ahmad Al-Mubaiyedh, Tahar Laoui, Rached Ben-Mansour
  • Patent number: 10078031
    Abstract: Compliant leak detection system. The system includes structure adapted to support at least two rows of leak detection leaves, each leak detection leaf supported by an arm pivotally attached to the structure and urged outwardly by a torsion spring into contact with a pipe wall so as to adjust for changes in pipe diameter. The leak detection leaf includes a rigid support and a flexible member such that suction from a leak will cause the flexible member to contact the pipe wall and put a drag force on the structure. An axial force transmitting drum measures the drag force to indicate presence of a leak.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: September 18, 2018
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Kamal Youcef-Toumi, Dimitrios Chatzigeorgiou, Rached Ben-Mansour
  • Patent number: 10040052
    Abstract: The composite adsorbent for an adsorption chiller is a composite material formed from multi-walled carbon nanotubes incorporated into a metal organic framework, where the metal organic framework is MIL-101(Cr). The MIL-101 family of metal organic frameworks include terephthalate (benzene 1,4-dicarboxylate) linkers and M3O-carboxylate trimers (M=Cr or Fe) with octrahedrally coordinated metal ions binding terminal water molecules. MIL-101 frameworks having a crystal structure with very large pore sizes (29 and 34 Angstroms) and surface area, and are known to have a large water uptake. However, metal organic frameworks have low thermal conductivity due to the presence of organic matter, resulting in lower heat transfer rates and greater cycle time, and are not stable in aqueous media or disintegrate slowly upon recurrent hydrothermal cycling. Composite binding with multi-wall carbon nanotubes improves heat transfer characteristics and thermal stability.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: August 7, 2018
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Syed Ahmed Mohammed Said, Rached Ben Mansour, Najam Ul Qadir
  • Patent number: 10018352
    Abstract: A fire tube boiler system including a plurality of oxygen transport reactors that heats a working fluid. Each oxygen transport reactor has a first inner tube with an ion transport membrane that receives air from a first supply line, extracts oxygen from the air, and evacuate oxygen depleted air through a first exhaust line, a second inner tube that surrounds the first inner tube that receives the oxygen from the ion transport membrane and a mixture of fuel and carbon dioxide from a second supply line and produces a oxy-combustion, and an peripheral tube that surrounds the second inner tube and evacuates the exhaust gases produced by the oxy-combustion and transfer heat from exhaust gases to the working fluid and the ion transport membrane.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: July 10, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mohamed Abdel-Aziz Habib, Rached Ben-Mansour
  • Publication number: 20180163110
    Abstract: A nanofluid composed of a base fluid and a solid nanocomposite particle, where the solid nanocomposite particle consists of a carbon nanotube and a metal oxide nanoparticle selected from the group consisting of Fe2O3, Al2O3, and CuO. The metal oxide nanoparticle is affixed inside of or to the outer surface of the carbon nanotube, and the solid nanocomposite particle is homogeneously dispersed in the base fluid. The heat transfer and specific heat capacity properties of the nanofluid are measured using differential scanning calorimetry and heat exchanger experiments with different nanocomposite concentrations and different metal oxide percent loadings.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 14, 2018
    Applicant: King Fahd University of Petroleum and Minerals
    Inventors: Muataz Ali ATIEH, Abdallah Darweesh Manasrah, Usamah Ahmad Al-Mubaiyedh, Tahar Laoui, Rached Ben-Mansour
  • Patent number: 9879167
    Abstract: A nanofluid composed of a base fluid and a solid nanocomposite particle, where the solid nanocomposite particle consists of a carbon nanotube and a metal oxide nanoparticle selected from the group consisting of Fe2O3, Al2O3, and CuO. The metal oxide nanoparticle is affixed inside of or to the outer surface of the carbon nanotube, and the solid nanocomposite particle is homogeneously dispersed in the base fluid. The heat transfer and specific heat capacity properties of the nanofluid are measured using differential scanning calorimetry and heat exchanger experiments with different nanocomposite concentrations and different metal oxide percent loadings.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: January 30, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Muataz Ali Atieh, Abdallah Darweesh Manasrah, Usamah Ahmad Al-Mubaiyedh, Tahar Laoui, Rached Ben-Mansour
  • Publication number: 20170284661
    Abstract: The present disclosure is directed to systems and methods for low-CO2 emission combustion of liquid fuel with a gas-assisted liquid fuel oxygen reactor. The system comprises an atomizer that sprays fuel and CO2 into an evaporation zone, where the fuel and CO2 is heated into a vaporized form. The system comprises a reaction zone that receives the vaporized fuel and CO2. The system includes an air vessel having an air stream, and a heating vessel adjacent to the air vessel that transfers heat to the air vessel. The system comprises an ion transport membrane in flow communication with the air vessel and reaction zone. The ion transport membrane receives O2 permeating from the air stream and transfers the O2 into the reaction zone resulting in combustion of fuel. The combustion produces heat and creates CO2 exhaust gases that are recirculated in the system limiting emission of CO2.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: Rached Ben-Mansour, Mohamed A. Habib, Aqil Jamal
  • Publication number: 20170239643
    Abstract: The composite adsorbent for an adsorption chiller is a composite material formed from multi-walled carbon nanotubes incorporated into a metal organic framework, where the metal organic framework is MIL-101(Cr). The MIL-101 family of metal organic frameworks include terephthalate (benzene 1,4-dicarboxylate) linkers and M3O-carboxylate trimers (M=Cr or Fe) with octrahedrally coordinated metal ions binding terminal water molecules. MIL-101 frameworks having a crystal structure with very large pore sizes (29 and 34 Angstroms) and surface area, and are known to have a large water uptake. However, metal organic frameworks have low thermal conductivity due to the presence of organic matter, resulting in lower heat transfer rates and greater cycle time, and are not stable in aqueous media or disintegrate slowly upon recurrent hydrothermal cycling. Composite binding with multi-wall carbon nanotubes improves heat transfer characteristics and thermal stability.
    Type: Application
    Filed: February 18, 2016
    Publication date: August 24, 2017
    Inventors: SYED AHMED MOHAMMED SAID, RACHED BEN MANSOUR, NAJAM UL QADIR
  • Publication number: 20170234759
    Abstract: Compliant leak detection system. The system includes structure adapted to support at least two rows of leak detection leaves, each leak detection leaf supported by an arm pivotally attached to the structure and urged outwardly by a torsion spring into contact with a pipe wall so as to adjust for changes in pipe diameter. The leak detection leaf includes a rigid support and a flexible member such that suction from a leak will cause the flexible member to contact the pipe wall and put a drag force on the structure. An axial force transmitting drum measures the drag force to indicate presence of a leak.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 17, 2017
    Inventors: Kamal Youcef-Toumi, Dimitrios Chatzigeorgiou, Rached Ben-Mansour
  • Patent number: 9721448
    Abstract: Wireless communication system for underground pipeline inspection. The system includes a plurality of sensor nodes moved by robots within the pipeline and each sensor node includes a radio transceiver. A plurality of spaced apart, above ground relay nodes are deployed along the pipeline, each relay node including a radio transceiver for communication with the sensor nodes. A remote monitoring center is provided in communication with the relay nodes, whereby a leak detected by a sensor node is communicated to the remote monitoring center. Each sensor node may further include a microcontroller, an accelerometer and a timer.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: August 1, 2017
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Dalei Wu, Kamal Youcef-Toumi, Samir Mekid, Rached Ben-Mansour
  • Publication number: 20160376486
    Abstract: A nanofluid composed of a base fluid and a solid nanocomposite particle, where the solid nanocomposite particle consists of a carbon nanotube and a metal oxide nanoparticle selected from the group consisting of Fe2O3, Al2O3, and CuO. The metal oxide nanoparticle is affixed inside of or to the outer surface of the carbon nanotube, and the solid nanocomposite particle is homogeneously dispersed in the base fluid. The heat transfer and specific heat capacity properties of the nanofluid are measured using differential scanning calorimetry and heat exchanger experiments with different nanocomposite concentrations and different metal oxide percent loadings.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Applicant: King Fahd University of Petroleum and Minerals
    Inventors: Muataz Ali Atieh, Abdallah Darweesh Manasrah, Usamah Ahmad Al-Mubaiyedh, Tahar Laoui, Rached Ben-Mansour
  • Patent number: 9366596
    Abstract: The pipeline leak detector is a mobile device having a pressure sensor array for travel within a fluid pipeline for leak detection in the pipe wall. The sensor array is positioned close to the internal surface of the pipe wall and rotates circumferentially about the surface of the pipe wall as the device travels through the pipe, thus describing a helical path along the pipe wall to cover the entire internal surface of the pipe wall with a minimal number of sensors. The sensors comprise tubes with conical mouths, and flexible members and strain gauges within the tubes. Pressure changes due to leaks cause the flexible members to move, with the strain gauges sending signals to a central processor to indicate a leak. The device is supported by a drive wheel, a driven wheel, and an idler wheel bearing against the internal surface of the pipe and evenly circumferentially spaced.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: June 14, 2016
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Samir Mekid, Rached Ben-Mansour
  • Patent number: 9335233
    Abstract: Leak detection system. The system includes a structure sized to fit within a pipe for supporting at least one sensing element near an inside wall of the pipe, whereby a pressure gradient at a leak in the pipe will cause the sensing element to respond. Structure is provided for detecting movement or deformation of the sensing element, the movement or deformation indicating the presence of a leak. In a preferred embodiment, the structure includes two spaced-apart rings for supporting the at least one sensing element. The sensing element is a diaphragm in a preferred embodiment. In this embodiment, the sensing element is supported for movement with respect to the ring structure which includes sensing circuitry for detecting the movement to indicate a leak. Other embodiments employ different sensing elements that respond to pressure gradients near leaks.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: May 10, 2016
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Atia Khalifa, Rached Ben-Mansour, Kamal Youcef-Toumi, Mohamed A. Habib, Dimitrios Chatzigeorgiou
  • Patent number: 9321466
    Abstract: Force control system. The system includes a first pair of permanent magnets for providing a normal force on the wheel of a robot adapted for n-pipe inspections. A second pair of magnets is provided with opposite polarity so that a rotor containing magnets may be rotated with a minimum of torque required and therefore with a minimum of energy expended.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: April 26, 2016
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Changrak Choi, Dimitrios Chatzigeorgiou, Rached Ben-Mansour, Kamal Youcef-Toumi
  • Patent number: 9297595
    Abstract: The heat exchanger flow balancing system serves to substantially equalize fluid flow through essentially identical diameter heat exchanger tubes in a heat exchanger having a single inlet plenum, a single outlet plenum, and a series of equal diameter heat exchanger tubes extending therebetween. In one embodiment, a series of different diameter orifices are provided at the inlet end of each of the tubes, with those tubes farther from the single larger diameter inlet pipe to the plenum generally having smaller orifices. In another embodiment, each of the tubes is provided with a conical nozzle at its inlet end, with those tubes farther from the single inlet pipe to the plenum generally having smaller diameter nozzles. The effect is to substantially equalize fluid flow through all of the heat exchanger tubes, thus increasing the efficiency of the heat exchanger.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: March 29, 2016
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Syed A. M. Said, Rached Ben Mansour, Mohamed A. Habib, Muhammad Umar Siddiqui
  • Patent number: 9285290
    Abstract: Leak detection apparatus for deployment in a pipe. The apparatus includes a carrier disposed for motion along the pipe and a detector connected to move with the carrier in an axial direction. The detector comprises a drum mounted for rotation about pitch and yaw axes. A flexible material is mounted on, and extends from, the drum and at least two sensors responsive to drum rotation are provided. The flexible material will be drawn into contact with a wall of the pipe at a leak location, thereby producing a torque on the drum, causing the drum to rotate, and the at least two sensors to generate signals from which leak location is determined.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: March 15, 2016
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Dimitrios Chatzigeorgiou, Samir Mekid, Rached Ben-Mansour, Atia Khalifa, Kamal Youcef-Toumi
  • Publication number: 20150179044
    Abstract: Wireless communication system for underground pipeline inspection. The system includes a plurality of sensor nodes moved by robots within the pipeline and each sensor node includes a radio transceiver. A plurality of spaced apart, above ground relay nodes are deployed along the pipeline, each relay node including a radio transceiver for communication with the sensor nodes. A remote monitoring center is provided in communication with the relay nodes, whereby a leak detected by a sensor node is communicated to the remote monitoring center. Each sensor node may further include a microcontroller, an accelerometer and a timer.
    Type: Application
    Filed: December 15, 2014
    Publication date: June 25, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Dalei Wu, Kamal Youcef-Toumi, Samir Mekid, Rached Ben-Mansour