Patents by Inventor Radislav Alexandrovich Potyrailo

Radislav Alexandrovich Potyrailo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220229005
    Abstract: A monolithic gas-sensing chip assembly for sensing a gas analyte includes a sensing material to detect the gas analyte, a sensing system including a resistor-capacitor electrical circuit, and a heating element. A sensing circuit measures an electrical response of the sensing system to an alternating electrical current applied to the sensing system at (a) one or more different frequencies, or (b) one or more different resistor-capacitor configurations of the system. One or more processors control a low detection range of the system to the gas, a high detection range of the system to the gas, a linearity of a response of the system to the gas, a dynamic range of measurements of the gas by the system, a rejection of interfering gas analytes by the system, a correction for aging or poisoning of the system, or a rejection of ambient interferences that may affect the electrical response of the system.
    Type: Application
    Filed: April 7, 2022
    Publication date: July 21, 2022
    Inventors: Radislav Alexandrovich Potyrailo, Emad Andarawis Andarawis, Naresh Kesavan Rao
  • Patent number: 11391716
    Abstract: A resonant sensor probe assembly includes a substrate formed from one or more dielectric materials and free-standing electrodes coupled with the substrate. The free-standing electrodes are configured to be placed into the fluid and to generate an electric field between the free-standing electrodes. A controller measures an impedance response of the sensor to the fluid between the electrodes to determine an aging effect of the sensor.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: July 19, 2022
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Radislav Alexandrovich Potyrailo, Craig Mack, Christopher Calvert, Brian Scherer, James Schreiner, Najeeb M Kuzhiyil, Subramani Adhiachari, Partho Kayal, Milan Karunaratne, Nicholas E. Roddy, Janaki Gadiyaram, Steven Go, Victor Manuel Salazar
  • Patent number: 11333646
    Abstract: A gas sensor system includes a gas sensing element that includes a gas sensing material and electrodes configured to apply electrical stimuli to the gas sensing material and one or more processors configured to control the gas sensing element. The one or more processors are configured to direct the electrodes to apply the electrical stimuli at two or more different electrical excitation frequencies to the gas sensing material. A first electrical excitation frequency of the two or more different electrical excitation frequencies is configured to provide a quantitative gas response of the gas sensing material, the quantitative gas response including a response drift. A second electrical excitation frequency of the two or more different electrical excitation frequencies is configured to provide a baseline response of the gas sensing material based at least in part on the response drift.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: May 17, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Radislav Alexandrovich Potyrailo
  • Patent number: 11300534
    Abstract: A monolithic gas-sensing chip assembly for sensing a gas analyte includes a sensing material to detect the gas analyte, a sensing system including a resistor-capacitor electrical circuit, and a heating element. A sensing circuit measures an electrical response of the sensing system to an alternating electrical current applied to the sensing system at (a) one or more different frequencies, or (b) one or more different resistor-capacitor configurations of the system. One or more processors control a low detection range of the system to the gas, a high detection range of the system to the gas, a linearity of a response of the system to the gas, a dynamic range of measurements of the gas by the system, a rejection of interfering gas analytes by the system, a correction for aging or poisoning of the system, or a rejection of ambient interferences that may affect the electrical response of the system.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: April 12, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Emad Andarawis Andarawis, Naresh Kesavan Rao
  • Patent number: 11280814
    Abstract: In accordance with the present disclosure, voltage sensing techniques using a voltage sensing device are employed to identify sources of electromagnetic radiation and provide warnings to a user about high levels of electromagnetic radiation. By way of example, the voltage sensing device may be a wearable device and may provide auditory, visual, and tactile alerts to a user.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: March 22, 2022
    Assignee: GENERAL ELECTIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Nancy Cecelia Stoffel, Cheng-Po Chen, Emad Andarawis Andarawis
  • Publication number: 20210318362
    Abstract: In accordance with the present disclosure, voltage sensing techniques using a voltage sensing device are employed to identify sources of electromagnetic radiation and provide warnings to a user about high levels of electromagnetic radiation. By way of example, the voltage sensing device may be a wearable device and may provide auditory, visual, and tactile alerts to a user.
    Type: Application
    Filed: April 8, 2020
    Publication date: October 14, 2021
    Inventors: Radislav Alexandrovich Potyrailo, Nancy Cecelia Stoffel, Cheng-Po Chen, Emad Andarawis Andarawis
  • Publication number: 20210293697
    Abstract: A sensor system includes a sensing element having a section of a layer assembly deposited onto a substrate. The layer assembly includes plural layers of different materials. The section of the layer assembly is configured to be etched to form plural individual pillars of the plural layers of the different materials. The individual pillars are configured to be in contact with a fluid to sense one or more analyte fluid components within the fluid. The sensing element is configured to generate a sensor signal responsive to the individual pillars being in contact with the fluid. The sensor system includes one or more processors configured to receive the sensor signal from the sensing element. The one or more processors may identify the one or more analyte fluid components within the fluid and an amount of each of the analyte fluid components within the fluid based on the sensor signal.
    Type: Application
    Filed: March 22, 2020
    Publication date: September 23, 2021
    Inventors: Radislav Alexandrovich Potyrailo, Joleyn Eileen Brewer
  • Publication number: 20210278384
    Abstract: A multi-gas sensing system includes a sensing circuit comprising one or more sensing elements. Each sensing element includes a sensing material configured to detect at least one gas analyte. A management circuit is configured to excite the sensing elements with an alternating current at at least one predetermined frequency. The management circuit measures one or more electrical responses of the sensing elements responsive to exciting the sensing elements with the alternating current. The management circuit determines one or more characteristics of the sensing circuit. One or more processors receive the electrical responses of the sensing elements and the characteristics of the sensing circuit. The one or more processors determine a concentration of the at least one gas analyte based on the electrical responses of the sensing elements and the characteristics of the sensing circuit.
    Type: Application
    Filed: March 9, 2020
    Publication date: September 9, 2021
    Inventors: Radislav Alexandrovich Potyrailo, Richard St. Pierre, Bruce Courtney Amm
  • Publication number: 20210270798
    Abstract: A resonant sensor probe assembly includes a substrate formed from one or more dielectric materials and free-standing electrodes coupled with the substrate. The free-standing electrodes are configured to be placed into the fluid and to generate an electric field between the free-standing electrodes. A controller measures an impedance response of the sensor to the fluid between the electrodes to determine an aging effect of the sensor.
    Type: Application
    Filed: April 7, 2021
    Publication date: September 2, 2021
    Inventors: Radislav Alexandrovich Potyrailo, Craig Mack, Christopher Calvert, Brian Scherer, James Schreiner, Najeeb M. Kuzhiyil, Subramani Adhiachari, Partho Kayal, Milan Karunaratne, Nicholas E. Roddy, Janaki Gadiyaram, Steven Go, Victor Manuel Salazar
  • Patent number: 10996210
    Abstract: A locomotive system is provided that includes a platform, plural wheel-axle sets operably coupled to the platform, a reservoir attached to the platform and configured to hold a fluid, and a resonant sensor probe assembly coupled to the reservoir. The sensor probe assembly includes a substrate formed from one or more dielectric materials and free-standing electrodes coupled with the substrate. The free-standing electrodes are configured to be placed into the fluid, to generate an electric field between the free-standing electrodes, and to measure an impedance response of the sensor to the fluid between the electrodes.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: May 4, 2021
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Radislav Alexandrovich Potyrailo, Craig Mack, Christopher Calvert, Brian Scherer, James Schreiner, Najeeb M. Kuzhiyil, Subramani Adhiachari, Partho Kayal, Milan Karunaratne, Nicholas E. Roddy, Janaki Gadiyaram, Steven Go, Victor Manuel Salazar
  • Patent number: 10989709
    Abstract: A method of recovering a target from a sample is provided. The method of recovering the target follows different steps. The steps include providing a binding element, wherein the binding elements are immobilized on a solid support, adding the sample comprising the target to the binding element to form a binding element-target complex; washing the binding element-target complex; and eluting the target from the binding element-target complex. The system for reversible detection of target in a range from 2 to 1,000,000 bind/release cycles is also provided.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: April 27, 2021
    Assignee: CYTIVA SWEDEN AB
    Inventors: Radislav Alexandrovich Potyrailo, Andrew David Pris, Nandini Nagraj, Anthony John Murray
  • Publication number: 20210109049
    Abstract: A gas sensing assembly includes a sensing material to be placed in contact with a fluid sample, electrodes coupled with the sensing material that apply an electric field to the sensing material across the electrodes, a heating element that controls a temperature of the sensing material while the sensing material is in contact with the fluid sample, and sensing circuitry to control application of the electric field to the sensing material via the electrodes at an alternating current frequency range in the presence of an uncontrolled ambient temperature and at an elevated alternating current frequency range. The sensing circuitry measures one or more electrical responses of the sensing material responsive to applying the electric field at the alternating current frequency range and at the elevated alternating current frequency range. The sensing circuitry detects presence of a gas in the fluid sample based on the one or more electrical responses.
    Type: Application
    Filed: October 13, 2019
    Publication date: April 15, 2021
    Inventor: Radislav Alexandrovich Potyrailo
  • Patent number: 10966657
    Abstract: A sensor system includes a first sensor to detect environmental conditions of an environment in operational contact with a subject, a second sensor to detect physiological parameters of the subject in operational contact with an asset, and a control unit comprising one or more processors communicatively coupled with the first sensor and the second sensor. The processors receive a first signal from the first sensor indicative of the environmental conditions, and receive a second signal from the second sensor indicative of the physiological parameters of the subject, and determine a relation between the environmental conditions and the physiological parameters based on the first signal and the second signal. The processors determine a responsive action of the asset based on the first signal indicative of the environmental conditions of the environment or the second signal indicative of the physiological parameters of the subject in operational contact with the asset.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: April 6, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Richard St. Pierre, Bruce Courtney Amm, Aghogho Atemu Obi
  • Publication number: 20210080381
    Abstract: A method of forming an optical transmission flow cell that includes forming a fluid pathway cavity though a housing, and forming an optical pathway cavity through the housing and through the fluid pathway cavity, the optical pathway cavity configured to receive an optical fiber to emit light through the fluid pathway cavity. Material is added at a transition between the optical pathway cavity and fluid pathway cavity to form a surface at the transition configured to prevent formation of air pockets within fluid in the optical pathway cavity.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Inventors: Radislav Alexandrovich Potyrailo, Jared Timothy Hale, Christian M. Heller
  • Patent number: 10948400
    Abstract: A method of forming an optical transmission flow cell that includes forming a fluid pathway cavity though a housing, and forming an optical pathway cavity through the housing and through the fluid pathway cavity, the optical pathway cavity configured to receive an optical fiber to emit light through the fluid pathway cavity. Material is added at a transition between the optical pathway cavity and fluid pathway cavity to form a surface at the transition configured to prevent formation of air pockets within fluid in the optical pathway cavity.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 16, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Jared Timothy Hale, Christian M. Heller
  • Publication number: 20210072175
    Abstract: A monolithic gas-sensing chip assembly for sensing a gas analyte includes a sensing material to detect the gas analyte, a sensing system including a resistor-capacitor electrical circuit, and a heating element. A sensing circuit measures an electrical response of the sensing system to an alternating electrical current applied to the sensing system at (a) one or more different frequencies, or (b) one or more different resistor-capacitor configurations of the system. One or more processors control a low detection range of the system to the gas, a high detection range of the system to the gas, a linearity of a response of the system to the gas, a dynamic range of measurements of the gas by the system, a rejection of interfering gas analytes by the system, a correction for aging or poisoning of the system, or a rejection of ambient interferences that may affect the electrical response of the system.
    Type: Application
    Filed: September 6, 2019
    Publication date: March 11, 2021
    Inventors: Radislav Alexandrovich Potyrailo, Emad Andarawis Andarawis, Naresh Kesavan Rao
  • Publication number: 20210063366
    Abstract: A sensor system includes an electrical circuit having plural leads coupled with one or more sensing regions. The sensing regions include gaps having sensing materials that detect an analyte of interest. The gaps close responsive to the sensing material corresponding to the gaps detecting the analyte of interest. One or more processors communicatively coupled with the electrical circuit receive electrical signals from the electrical circuit indicative of the gaps closing responsive to the sensing material of the corresponding gaps detecting the analyte of interest. The electrical circuit is in a closed position in the presence of the analyte of interest. The sensor system is configured to consume an increased amount of power when the electrical circuit is in the closed position relative to the electrical circuit in an open position responsive to the one or more of the gaps closing. A responsive action is determined based on the electrical signals.
    Type: Application
    Filed: May 15, 2019
    Publication date: March 4, 2021
    Inventors: Radislav Alexandrovich Potyrailo, Richard St. Pierre, Emad Andarawis Andarawis
  • Patent number: 10914698
    Abstract: A system that includes a sensor for measuring a resonant impedance spectral response of an inductor-capacitor-resistor (LCR) resonator and correlating the measured response of one or more spectral parameters to one or more characteristics of the fluid. Such characteristics may be the age or health of the fluid and/or the identification of and concentration of components in the fluid.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: February 9, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Igor Tokarev
  • Publication number: 20210033552
    Abstract: A sensor system includes a multi-frequency sensor assembly including a single sensor body housing with a sensing region circuit and a sensor reader disposed in the sensor body. The sensor body is configured to be in operational contact with a fluid. The sensing region circuit is configured to generate different electric fields having different frequencies in the fluid. The sensor reader includes one or more processors configured to examine one or more impedance responses of the sensing region circuit at different frequencies and to determine one or more properties of the fluid based on the one or more impedance responses that are examined.
    Type: Application
    Filed: August 17, 2020
    Publication date: February 4, 2021
    Inventors: Radislav Alexandrovich Potyrailo, Daniel White Sexton, Steven Y. Go
  • Patent number: 10884232
    Abstract: An insertion apparatus includes an insertion end positionable within a cavity and configured to travel through the cavity, a steering end opposite the insertion end, and a body extending from the insertion end to the steering end and sized to fit within the cavity. The body includes a plurality of members flexibly coupled together and individually actuated. Each member of the plurality of members includes at least one actuator strand. At least one member of the plurality of members has a first configuration in which the at least one member of the plurality of members has a first stiffness and a second configuration in which the at least one member of the plurality of members has a second stiffness greater than the first stiffness. At least a portion of the body is flexible to facilitate travel of the body through the cavity when the at least one member of the plurality of members is in the first configuration.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: January 5, 2021
    Assignee: General Electric Company
    Inventors: Deepak Trivedi, Charles Burton Theurer, Anil Raj Duggal, Hongyi Zhou, Radislav Alexandrovich Potyrailo, Yizhen Lin