Patents by Inventor Radislav Alexandrovich Potyrailo

Radislav Alexandrovich Potyrailo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140182363
    Abstract: A method for analyzing a sample includes providing a sensor assembly having a sensing region with a plurality of resonant circuits, and a plurality of tuning elements. The method further includes exposing the sensor assembly to an environment comprising the sample, and probing the sample with one or more frequencies generated by the sensor assembly. Furthermore, the method includes determining an impedance of a sensor response over a measured spectral frequency range of the sensor assembly, and relating measurement of impedance of the sensor assembly to at least one environmental property of the sample.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Yongjae Lee, Victoria Eugenia Cotero, Jon Albert Dieringer
  • Publication number: 20140182362
    Abstract: A resonant sensor assembly includes a dielectric substrate having a sensing region. The sensor assembly further comprises a plurality of tuning elements operatively coupled to the sensing region, where the sensing region is coupled to the plurality of tuning elements to define a plurality of resonant circuits.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Yongjae Lee, Victoria Eugenia Cotero, Jon Albert Dieringer
  • Patent number: 8736425
    Abstract: The present invention related to methods and systems for simultaneously sensing two or more environmental parameters of a sample. Included is an inductor-capacitor-resistor (LCR) resonator sensor and a pick up coil in operative association with the LCR resonator sensor wherein viscoelastic changes in the sensing film cause displacement of the antenna relative to the pick up coil.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: May 27, 2014
    Assignee: General Electric Company
    Inventor: Radislav Alexandrovich Potyrailo
  • Patent number: 8717146
    Abstract: An integrated interrogator for a RFID sensor is provided. The integrated interrogator comprises a digital reader in communication with the RFID sensor, an impedance reader in communication with the RFID sensor, and one or more controllers that coordinate actions of the digital reader and the impedance reader.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 6, 2014
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Harold Woodruff Tomlinson, Jr., William Guy Morris
  • Publication number: 20140095102
    Abstract: An impedance analyzer is provided. The analyzer includes a signal excitation generator comprising a digital to analog converter, where a transfer function of the digital to analog converter from digital to analog is programmable. The impedance analyzer further includes a receiver comprising a low noise amplifier (LNA) and an analog to digital converter (ADC), where the LNA is a current to voltage converter; where the programmable digital to analog transfer function is implemented by a direct digital synthesizer (DDS) and a voltage mode digital to analog converter, or a digital phase locked loop (PLL), or both. Further, a multivariable sensor node having an impedance analyzer is provided. Furthermore, a multivariable sensor network having a plurality of multivariable sensor nodes is provided.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Jeffrey Michael Ashe, Sm Shajed Hasan, Naresh Kesavan Rao, Krishnakumar Sundaresan
  • Publication number: 20140091811
    Abstract: A method for multivariable measurements using a single-chip impedance analyzer includes providing a sensor, exposing the sensor to an environmental parameter, determining a complex impedance of the sensor over a measured spectral frequency range of the sensor, and monitoring at least three spectral parameters of the sensor.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Jeffrey Michael Ashe, Sm Shajed Hasan, Naresh Kesavan Rao, Krishnakumar Sundaresan
  • Publication number: 20140028327
    Abstract: In one embodiment a method for sensor reader calibration comprising: performing a calibration of a sensor reader wherein the calibration comprises open circuit calibration, a short circuit calibration, and a load circuit calibration, or any combination thereof in any succession; enabling connection of a pickup coil to the sensor reader to measure a sensor response; and applying a baseline correction to the sensor response, wherein the baseline correction is obtained utilizing measurements from the calibration step.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 30, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: RADISLAV ALEXANDROVICH POTYRAILO, IAN JAMES FORSTER
  • Publication number: 20140028330
    Abstract: In one embodiment, a RF sensor comprising a sensing antenna and a reference antenna, wherein a sensing material is disposed upon said sensing antenna and wherein the sensing antenna is configured to test for specific analyte by measurement of the resonant impedance spectra, and the reference antenna is configured to mitigate and correct for environmental parameters and positionn. In a further embodiment, a method for sensing comprising; utilizing an RF sensor, wherein the RF sensor comprises a sensing antenna and a reference antenna, wherein said RF sensor is configured to test for a specific analyte; and, measuring a resonant impedance spectra of the sensing antenna and reference antennaat multiple frequencies to provide a subsequent multivariate analysis of a signal response from the RF sensor.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 30, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: RADISLAV ALEXANDROVICH POTYRAILO, IAN JAMES FORSTER
  • Publication number: 20140025313
    Abstract: Methods and sensors for selective fluid sensing are provided. Each sensor includes a resonant inductor-capacitor-resistor (LCR) sensor that is coated with a sensing material. In order to collect data, an impedance spectrum is acquired over a relatively narrow frequency range, such as the resonant frequency range of the LCR circuit. A multivariate signature may be calculated from the acquired spectrum to discern the presence of certain fluids and/or fluid mixtures. The presence of fluids is detected by measuring the changes in dielectric, dimensional, resistance, charge transfer, and other changes in the properties of the materials employed by observing the changes in the resonant electronic properties of the circuit. By using a mathematical procedure, such as principal components analysis (PCA) and others, multiple fluids and mixtures can be detected in the presence of one another, even in a high humidity environment or an environment wherein one or more fluids has a substantially higher concentration (e.g.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 23, 2014
    Applicant: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Cheryl Margaret Surman, Andrew Arthur Paul Burns, Nandini Nagraj
  • Publication number: 20140019067
    Abstract: Methods and sensors for selective fluid sensing are provided. A sensor includes a resonant inductor-capacitor-resistor (LCR) circuit and a sensing material disposed over a sensing region. The sensing region comprises at least a portion of the LCR circuit. Temperature-dependent response coefficients of inductance L, capacitance C, and resistance R properties of the LCR circuit and the sensing material are at least approximately 5 percent different from one another. The difference in the temperature-dependent response coefficients of the properties of the LCR circuit and the sensing material enables the sensor to selectively detect analyte fluids from an analyzed fluid mixture substantially independent of temperature.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 16, 2014
    Applicant: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Cheryl Margaret Surman
  • Publication number: 20140011286
    Abstract: Methods and sensors for selective fluid sensing are provided. A gas dosimeter includes a housing configured with an opening to admit an analyte. The gas dosimeter also includes a multivariate sensor disposed in the housing. The sensor is configured to determine a concentration of the analyte over time. In addition, the multivariate sensor includes an irreversible sensing material. Electrical properties of the irreversible sensing material are configured to change irreversibly upon exposure to the analyte.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 9, 2014
    Applicant: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Hubert Tunchiao Lam, Zhexiong Tang, Nandini Nagraj
  • Publication number: 20140002111
    Abstract: A sensing system includes an inductor-capacitor-resistor (LCR) resonator sensor having a substrate, a plurality of first sensing elements mutually spaced apart and disposed on the substrate, and a sensing material film being disposed on a first sensing region of the corresponding first sensing element.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Cheryl Margaret Surman, Steven Yuehin Go, Yongjae Lee
  • Patent number: 8542023
    Abstract: Methods and sensors for selective fluid sensing are provided. Each sensor includes a resonant inductor-capacitor-resistor (LCR) sensor that is coated with a sensing material. In order to collect data, an impedance spectrum is acquired over a relatively narrow frequency range, such as the resonant frequency range of the LCR circuit. A multivariate signature may be calculated from the acquired spectrum to discern the presence of certain fluids and/or fluid mixtures. The presence of fluids is detected by measuring the changes in dielectric, dimensional, resistance, charge transfer, and other changes in the properties of the materials employed by observing the changes in the resonant electronic properties of the circuit. By using a mathematical procedure, such as principal components analysis (PCA) and others, multiple fluids and mixtures can be detected in the presence of one another, even in a high humidity environment or an environment wherein one or more fluids has a substantially higher concentration (e.g.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: September 24, 2013
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Cheryl Margaret Surman, Andrew Arthur Paul Burns, Nandini Nagraj
  • Patent number: 8542024
    Abstract: Methods and sensors for selective fluid sensing are provided. A sensor includes a resonant inductor-capacitor-resistor (LCR) circuit and a sensing material disposed over a sensing region. The sensing region comprises at least a portion of the LCR circuit. Temperature-dependent response coefficients of inductance L, capacitance C, and resistance R properties of the LCR circuit and the sensing material are at least approximately 5 percent different from one another. The difference in the temperature-dependent response coefficients of the properties of the LCR circuit and the sensing material enables the sensor to selectively detect analyte fluids from an analyzed fluid mixture substantially independent of temperature.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: September 24, 2013
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Cheryl Margaret Surman
  • Patent number: 8508368
    Abstract: A sensing device for sensing one or more conditions inside a container is provided. The sensing device comprises a radio frequency based sensor; a support for positioning the sensor in operative proximity to the inside of the container, and a pick-up coil in operative association with the sensor.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: August 13, 2013
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, William Guy Morris, David James Monk, Vijay Singh
  • Patent number: 8475716
    Abstract: An embodiment of the invention described herein is directed to a detection system utilizing at least one radiofrequency identification (RFID) sensor comprising: an RFID sensor comprising: a substrate; an antenna; a sensor material selected to be sensitive to one of chemical or biological environment; and a reader, wherein said reader is configured to measure a signal in the form of a complex impedance from said RFID tag wherein said signal comprises a plurality of frequencies and a frequency shift of the maximum of the imaginary part of the complex impedance, a frequency shift of the minimum of the imaginary part of the complex impedance, a frequency shift of the maximum of the real part of the complex impedance, and changes in magnitude of the real part of the complex impedance; and, wherein said complex impedance is related to a nature and a concentration of analyte species derived from multivariate analysis.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: July 2, 2013
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, William Guy Morris
  • Publication number: 20130154847
    Abstract: In one aspect the present invention provides a down-hole monitoring system, comprising one or more pieces of down-hole equipment, for example a down-hole logging tool, and at least one resonant sensor for obtaining physical and chemical parameters of a down-hole fluid in proximity to the sensor. In another aspect, the present invention provides a method for detecting material properties of a down-hole fluid, the method comprising placing a resonant LCR sensor within a piece of down-hole equipment, taking sensor readings down-hole, transmitting the sensor readings to a reader device, and analyzing the sensor readings.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Cheryl Margaret Surman, Nicholas Josep Ellson
  • Publication number: 20130135617
    Abstract: A transducer includes a source of electromagnetic radiation, a substrate having a plurality of flow through passages and a receiver. The plurality of nanoparticles is disposed on the substrate and includes a material having a dielectric constant being arranged to support a photonically excited Plasmon in response to electromagnetic radiation from the source. The receiver measures the electromagnetic radiation and is disposed in optical communication with the substrate.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Andrew David PRIS, Windsor Paige OSBERG, Radislav Alexandrovich POTYRAILO
  • Patent number: 8425858
    Abstract: An apparatus includes an article and a detector. The article includes a substrate, a faceted structure disposed on the substrate, and a sensor layer disposed on the faceted structure. The faceted structure is disposed on the substrate first surface and itself has a surface. The faceted structure surface has peripheral edge defining a diameter of the faceted structure surface. The sensor layer is disposed on the faceted structure surface. The sensor layer can react or can interact with a target species when the target species is sufficiently proximate to the sensor layer. The sensor layer responds to the reaction or to the interaction in a detectable manner. The detector detects a response to the reaction, or to the interaction, of the target species with the sensor layer.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 23, 2013
    Assignee: Morpho Detection, Inc.
    Inventors: Steven Francis LeBoeuf, Peter Micah Sandvik, Radislav Alexandrovich Potyrailo
  • Patent number: 8364419
    Abstract: A system, device and methods, for determining at least two analytes, wherein the system and device include at least one resonant sensor circuit that includes a sensing material that predictably affects the resonant complex impedance response of a sensor electrode. The sensing material has at least two material properties that change when the materials are exposed to two or more analytes. The system and device also include a processor that generates a multivariate sensor response pattern that is based at least in part on a change in the two material properties of the sensing material.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: January 29, 2013
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, James Anthony Cella, Cheryl Margaret Surman, Kelly Scott Chichak, Steven Go