Patents by Inventor Radu Coman

Radu Coman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10739489
    Abstract: An embodiment of a method of performing a nuclear magnetic resonance (NMR) measurement includes disposing a NMR measurement device in a carrier in an earth formation, applying a static magnetic field into a formation, and emitting a plurality of pulse sequences into the formation, the plurality of pulse sequences including at least a first pulse sequence having a first wait time and a second pulse sequence having a second wait time. The method also includes receiving a long wait-time echo train based on the first pulse sequence and a short wait-time echo train based on the second pulse sequence. The method further includes transforming, by a processor, the echo trains into volumetric portions including a first fluid volumetric portion, estimating a longitudinal relaxation time for the first fluid volumetric portion; and identifying whether the first fluid volumetric portion is gas or light oil based on the estimated longitudinal relaxation time.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: August 11, 2020
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventor: Radu Coman
  • Patent number: 10551521
    Abstract: A nuclear magnetic resonance (NMR) apparatus includes a carrier configured to be deployed in a borehole, a magnet assembly configured to generate a static magnetic field in an earth formation, and at least one transmitting assembly configured to generate an oscillating magnetic field in a volume of interest within the formation. The apparatus also includes a pulse generator configured to apply a direct-echo pulse sequence to the at least one transmitting assembly, the direct-echo pulse sequence having a plurality of successive pulses including a first pulse and a second pulse configured to generate a first direct NMR echo, and a third pulse, the third pulse selected to at least partially separate a stimulated NMR echo from a second direct NMR echo occurring after the third pulse. The apparatus further includes at least one receiving assembly configured to detect the first and second direct echoes of an NMR echo train.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: February 4, 2020
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Radu Coman, Martin Blanz, Holger Tietjen
  • Patent number: 10539705
    Abstract: A system for measuring a property of fluid in an earth formation includes a downhole tool disposed in a borehole and configured to be movable within the borehole and a nuclear magnetic resonance (NMR) measurement device including a transmitter configured to emit at least two pulse trains of magnetic energy into the earth formation and a detector configured to detect a long-TW echo train and a short-TW echo train resulting from the at least two pulse trains. The system also includes a processor configured to combine the information from the at least two pulse trains and a rate of penetration of the downhole tool to form a measurement of the property.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: January 21, 2020
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Radu Coman, Holger Tietjen, Holger F. Thern, Martin Blanz
  • Patent number: 10466381
    Abstract: A method for estimating a property of a subsurface material includes: conveying a carrier through a borehole penetrating the subsurface material; performing at least two magnetic resonance (NMR) measurements in a volume of interest in the subsurface material using an NMR tool disposed on the carrier, wherein (i) a first NMR measurement has a first wait time and a first first-echo time and a second NMR measurement has a second wait time and a second first-echo time, (ii) the first wait time and the second wait time are less than or equal to 500 milliseconds, and (iii) the first first-echo time and the second first-echo time are different; receiving at least the first-echo of the first NMR measurement and receiving at least the first-echo of the second NMR measurement; and estimating the property of the subsurface material by using the at least two measured first-echoes simultaneously.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: November 5, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventor: Radu Coman
  • Patent number: 10429536
    Abstract: A method for processing nuclear magnetic resonance (NMR) measurement data includes receiving, with a processor, NMR measurement data obtained from an NMR tool, the NMR measurement data having an echo train affected by a motion artifact, wherein the motion artifact is related to a magnetic field magnitude that varies in a volume of interest due to a motion of the NMR tool. The method further includes reducing, with the processor, an effect on the NMR measurement data of the motion artifact by using a correcting inversion method that models the motion artifact to provide a corrected transverse relaxation time constant (T2) distribution, the correcting inversion method having a multiplicative term having a term that includes at least one local maximum and an optional decay term.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: October 1, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Tobias Kischkat, Radu Coman, Holger Frank Thern
  • Patent number: 10302801
    Abstract: An apparatus for estimating properties of an earth formation includes a nuclear magnetic resonance (NMR) measurement device including a magnet assembly, at least one transmitting assembly configured to generate an oscillating magnetic field in the formation, and a receiver configured to detect NMR signals from at least a sensitive volume in the formation. The apparatus also includes a processing device configured to receive NMR data corresponding to the detected NMR signals. The processing device is configured to perform combining a geometrical factor of the NMR logging tool with a temperature distribution, the temperature distribution indicating a temperature value at at least one location in the sensitive volume of the formation, correcting the NMR data based on the temperature value, estimating a property of the formation based on the corrected NMR data, and performing one or more aspects of an energy industry operation based on the estimated property.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: May 28, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Radu Coman, Holger Tietjen
  • Patent number: 10267946
    Abstract: An embodiment of a nuclear magnetic resonance (NMR) apparatus for estimating properties of an earth formation includes an NMR measurement device including a transmitting assembly configured to emit a pulse sequence and a receiving assembly configured to detect an echo train based on the pulse sequence, and a processor. The processor is configured to perform receiving input parameters including an axial speed of the NMR measurement device and a T1 value associated with a selected formation fluid, analyzing polarization data associated with the T1 value, the polarization data describing a dependency between polarization and axial speed, determining a wait time for the pulse sequence based on the polarization data, applying the pulse sequence with the determined wait time to the transmitting assembly, and estimating a property of the earth formation based on the echo train detected by the receiving assembly in response to the pulse sequence.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: April 23, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventor: Radu Coman
  • Patent number: 10126457
    Abstract: A nuclear magnetic resonance (NMR) apparatus includes a transmitting assembly configured to emit one or more dual-wait-time pulse sequences, and a receiving assembly configured to detect a long-wait-time echo train and a short-wait-time echo train. The apparatus also includes a processor configured to perform at least one of: estimating a difference between the long-wait-time echo train and the short-wait-time echo train to generate a differential echo-train, inverting the differential echo-train into a differential T2 distribution, and detecting a motion artefact in response to determining that the differential echo-train includes a short-T2 porosity fraction that is greater than a threshold value; and inverting two echo trains into two T2 distributions, calculating at least two porosity fractions for each of the two T2 distributions, estimating a shift of a porosity amount between the at least two porosity fractions, and detecting the motion artefact based on the shift.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: November 13, 2018
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Radu Coman, Holger Tietjen, Martin Blanz, Holger F. Thern
  • Patent number: 10061053
    Abstract: A method for estimating a property of a subsurface material includes conveying a carrier through a borehole penetrating the subsurface material and performing an NMR measurement in a volume of interest in the subsurface material using an NMR tool having an antenna disposed at the carrier. The method further includes receiving with the antenna a short build-up signal due to a short magnetization build-up time of the NMR measurement, an echo-train signal with short polarization time due to the NMR measurement, and an echo-train signal with long polarization time due to the NMR measurement. The method further includes inverting, simultaneously, the short build-up signal, the short-polarization-time echo-train signal, and the long-polarization-time echo-train signal using a processor to estimate the property; and transmitting a signal comprising the property to a signal receiving device.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: August 28, 2018
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Martin Blanz, Holger Frank Thern, Holger Tietjen, Mouin Hamdan, Radu Coman
  • Publication number: 20170351002
    Abstract: An embodiment of a nuclear magnetic resonance (NMR) apparatus for estimating properties of an earth formation includes an NMR measurement device including a transmitting assembly configured to emit a pulse sequence and a receiving assembly configured to detect an echo train based on the pulse sequence, and a processor. The processor is configured to perform receiving input parameters including an axial speed of the NMR measurement device and a T1 value associated with a selected formation fluid, analyzing polarization data associated with the T1 value, the polarization data describing a dependency between polarization and axial speed, determining a wait time for the pulse sequence based on the polarization data, applying the pulse sequence with the determined wait time to the transmitting assembly, and estimating a property of the earth formation based on the echo train detected by the receiving assembly in response to the pulse sequence.
    Type: Application
    Filed: June 1, 2016
    Publication date: December 7, 2017
    Applicant: Baker Hughes Incorporated
    Inventor: Radu Coman
  • Publication number: 20170315257
    Abstract: An apparatus for estimating properties of an earth formation includes a nuclear magnetic resonance (NMR) measurement device including a magnet assembly, at least one transmitting assembly configured to generate an oscillating magnetic field in the formation, and a receiver configured to detect NMR signals from at least a sensitive volume in the formation. The apparatus also includes a processing device configured to receive NMR data corresponding to the detected NMR signals. The processing device is configured to perform combining a geometrical factor of the NMR logging tool with a temperature distribution, the temperature distribution indicating a temperature value at at least one location in the sensitive volume of the formation, correcting the NMR data based on the temperature value, estimating a property of the formation based on the corrected NMR data, and performing one or more aspects of an energy industry operation based on the estimated property.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 2, 2017
    Applicant: Baker Hughes Incorporated
    Inventors: Radu Coman, Holger Tietjen
  • Publication number: 20170285214
    Abstract: A method for processing nuclear magnetic resonance (NMR) measurement data includes receiving, with a processor, NMR measurement data obtained from an NMR tool, the NMR measurement data having an echo train affected by a motion artifact, wherein the motion artifact is related to a magnetic field magnitude that varies in a volume of interest due to a motion of the NMR tool. The method further includes reducing, with the processor, an effect on the NMR measurement data of the motion artifact by using a correcting inversion method that models the motion artifact to provide a corrected transverse relaxation time constant (T2) distribution, the correcting inversion method having a multiplicative term having a term that includes at least one local maximum and an optional decay term.
    Type: Application
    Filed: April 4, 2016
    Publication date: October 5, 2017
    Applicant: Baker Hughes Incorporated
    Inventors: Tobias Kischkat, Radu Coman, Holger Frank Thern
  • Publication number: 20170254919
    Abstract: A nuclear magnetic resonance (NMR) apparatus includes a transmitting assembly configured to emit one or more dual-wait-time pulse sequences, and a receiving assembly configured to detect a long-wait-time echo train and a short-wait-time echo train. The apparatus also includes a processor configured to perform at least one of: estimating a difference between the long-wait-time echo train and the short-wait-time echo train to generate a differential echo-train, inverting the differential echo-train into a differential T2 distribution, and detecting a motion artefact in response to determining that the differential echo-train includes a short-T2 porosity fraction that is greater than a threshold value; and inverting two echo trains into two T2 distributions, calculating at least two porosity fractions for each of the two T2 distributions, estimating a shift of a porosity amount between the at least two porosity fractions, and detecting the motion artefact based on the shift.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 7, 2017
    Applicant: Baker Hughes Incorporated
    Inventors: Radu Coman, Holger Tietjen, Martin Blanz, Holger F. Thern
  • Publication number: 20170205527
    Abstract: An embodiment of a method of performing a nuclear magnetic resonance (NMR) measurement includes disposing a NMR measurement device in a carrier in an earth formation, applying a static magnetic field into a formation, and emitting a plurality of pulse sequences into the formation, the plurality of pulse sequences including at least a first pulse sequence having a first wait time and a second pulse sequence having a second wait time. The method also includes receiving a long wait-time echo train based on the first pulse sequence and a short wait-time echo train based on the second pulse sequence. The method further includes transforming, by a processor, the echo trains into volumetric portions including a first fluid volumetric portion, estimating a longitudinal relaxation time for the first fluid volumetric portion; and identifying whether the first fluid volumetric portion is gas or light oil based on the estimated longitudinal relaxation time.
    Type: Application
    Filed: January 15, 2016
    Publication date: July 20, 2017
    Applicant: Baker Hughes Incorporated
    Inventor: Radu Coman
  • Publication number: 20170184755
    Abstract: A method for estimating a property of a subsurface material includes: conveying a carrier through a borehole penetrating the subsurface material; performing at least two magnetic resonance (NMR) measurements in a volume of interest in the subsurface material using an NMR tool disposed on the carrier, wherein (i) a first NMR measurement has a first wait time and a first first-echo time and a second NMR measurement has a second wait time and a second first-echo time, (ii) the first wait time and the second wait time are less than or equal to 500 milliseconds, and (iii) the first first-echo time and the second first-echo time are different; receiving at least the first-echo of the first NMR measurement and receiving at least the first-echo of the second NMR measurement; and estimating the property of the subsurface material by using the at least two measured first-echoes simultaneously.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 29, 2017
    Applicant: Baker Hughes Incorporated
    Inventor: Radu Coman
  • Patent number: 9671483
    Abstract: A method for processing nuclear magnetic resonance (NMR) measurement data includes: receiving, with a processor, NMR measurement data obtained from an NMR tool, the NMR measurement data being affected by a motion artifact and having a first echo train obtained with a long polarization time TWET and a second echo train obtained with a short polarization time TWTL that is shorter than TWET; and at least one of (i) reducing, with a processor, an effect on the NMR measurement data of the motion artifact using the first echo train and the second echo train and (ii) identifying, with a processor, the motion artifact using the first echo train and the second echo train; wherein the motion artifact is related to a magnetic field magnitude that varies in a volume of interest due to a motion of the NMR tool.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: June 6, 2017
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Martin Blanz, Holger Frank Thern, Radu Coman
  • Publication number: 20160334533
    Abstract: A nuclear magnetic resonance (NMR) apparatus includes a carrier configured to be deployed in a borehole, a magnet assembly configured to generate a static magnetic field in an earth formation, and at least one transmitting assembly configured to generate an oscillating magnetic field in a volume of interest within the formation. The apparatus also includes a pulse generator configured to apply a direct-echo pulse sequence to the at least one transmitting assembly, the direct-echo pulse sequence having a plurality of successive pulses including a first pulse and a second pulse configured to generate a first direct NMR echo, and a third pulse, the third pulse selected to at least partially separate a stimulated NMR echo from a second direct NMR echo occurring after the third pulse. The apparatus further includes at least one receiving assembly configured to detect the first and second direct echoes of an NMR echo train.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 17, 2016
    Applicant: Baker Hughes Incorporated
    Inventors: Radu Coman, Martin Blanz, Holger Tietjen
  • Publication number: 20160320519
    Abstract: A method for estimating a property of a subsurface material includes conveying a carrier through a borehole penetrating the subsurface material and performing an NMR measurement in a volume of interest in the subsurface material using an NMR tool having an antenna disposed at the carrier. The method further includes receiving with the antenna a short build-up signal due to a short magnetization build-up time of the NMR measurement, an echo-train signal with short polarization time due to the NMR measurement, and an echo-train signal with long polarization time due to the NMR measurement. The method further includes inverting, simultaneously, the short build-up signal, the short-polarization-time echo-train signal, and the long-polarization-time echo-train signal using a processor to estimate the property; and transmitting a signal comprising the property to a signal receiving device.
    Type: Application
    Filed: April 30, 2015
    Publication date: November 3, 2016
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Martin Blanz, Holger Frank Thern, Holger Tietjen, Mouin Hamdan, Radu Coman
  • Publication number: 20160116629
    Abstract: A system for measuring a property of fluid in an earth formation includes a downhole tool disposed in a borehole and configured to be movable within the borehole and a nuclear magnetic resonance (NMR) measurement device including a transmitter configured to emit at least two pulse trains of magnetic energy into the earth formation and a detector configured to detect a long-TW echo train and a short-TW echo train resulting from the at least two pulse trains. The system also includes a processor configured to combine the information from the at least two pulse trains and a rate of penetration of the downhole tool to form a measurement of the property.
    Type: Application
    Filed: October 22, 2015
    Publication date: April 28, 2016
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Radu Coman, Holger Tietjen, Holger F. Thern, Martin Blanz
  • Patent number: 9250347
    Abstract: The present disclosure is direct to method of performing measurements while drilling in an earth formation. The method may include estimating a location of a seismic reflector using signals from one or more of seismic sensors located at a plurality of locations in a borehole and the drilling depth of the one or more seismic sensors in a borehole. The signals may include information about times when the seismic sensors detect a direct wave and a reflected wave. The method may include storing the information in a memory using a processor.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: February 2, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventor: Radu Coman