Patents by Inventor Radu Ioan Danescu

Radu Ioan Danescu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965423
    Abstract: A system and process for restarting a turbomachine includes a shutdown cooldown protection process implemented by a plant level control system or direct control system of the turbomachine. The system and process for restarting ensure rotating components are cooled as expected prior to a unit restart. This system and process for restarting will lockout an ability to restart if an improper cooldown of rotating components is detected. If this lockout is enabled, delaying restart for the rotating components to cool naturally is needed, or the operator could decide to force cool the components.
    Type: Grant
    Filed: May 11, 2023
    Date of Patent: April 23, 2024
    Assignee: GE Infrastructure Technology LLC
    Inventors: Garth Curtis Frederick, Brett Darrick Klingler, Kenneth Damon Black, Radu Ioan Danescu
  • Publication number: 20180347398
    Abstract: A system includes a gas turbine engine, including a compressor, a combustor, and a turbine. The system includes an intercooler configured to receive a discharge air from the compressor and to cool the discharge air. The system includes a first conduit to divert a portion of the cooled discharge air from the intercooler or a location downstream of the intercooler to a bearing located within the turbine to pressurize the bearing to block leakage of fluid from the bearing.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 6, 2018
    Inventors: Dariusz Andrzej FALKUS, Tho Vankhanh NGUYEN, Tuy Cam HUYNH, Radu Ioan DANESCU, Richard Michael WATKINS, Mariusz SEREDYN, Kheun CHIA
  • Patent number: 10024189
    Abstract: A turbine casing includes at least one shell adapted to enclose one or more turbine stages in a gas turbine engine; an air inlet in the at least one shell; a flow sleeve secured to an inside surface of the at least one shell, the flow sleeve comprising at least two arcuate segments. Each arcuate segment includes an arcuate base, a pair of sidewalls extending radially outwardly of the base thereby forming a circumferentially-extending flow channel defined by the base, the sidewalls and the inside surface. The air inlet is aligned with the flow channel and the sleeve is configured to distribute air flowing in the channel into spaces proximate the one or more turbine stages in circumferential, radial and axial directions, including along the inside surface of the at least one shell.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: July 17, 2018
    Assignee: General Electric Company
    Inventors: Radu Ioan Danescu, David Martin Johnson, Kenneth Damon Black, Christopher Paul Cox, Ozgur Bozkurt
  • Patent number: 9828880
    Abstract: A gas turbine engine system having a combustion section and a turbine section is provided. The turbine section includes at least one turbine stage having a plurality of turbine blades coupled to a rotor and an inner casing circumferentially disposed about the plurality of turbine blades. The turbine section includes an outer casing circumferentially disposed about at least a portion of the inner casing. The inner casing and the outer casing define a cavity comprising a volume configured to facilitate the distribution of air within the cavity to cool an outer surface of the inner casing and an inner surface of the outer casing. The outer casing comprises at least one air inlet and the inner casing comprises at least one air outlet. At least one flange is provided within the cavity, and the at least one flange flanks the air inlet and at least one flow guide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 28, 2017
    Assignee: General Electric Company
    Inventors: Henry Grady Ballard, Jr., Ozgur Bozkurt, Kenneth Damon Black, Radu Ioan Danescu
  • Patent number: 9546567
    Abstract: A system is provided including a turbine exhaust section. The turbine exhaust section includes an exhaust flow path. The turbine exhaust section also includes an outer structure having an outer casing, an outer exhaust wall disposed along the exhaust flow path, and an outer cavity disposed between the outer exhaust wall and the outer casing. The turbine exhaust section further includes an inner structure having an inner exhaust wall disposed along the exhaust flow path, an inner cavity disposed between the inner exhaust wall and an inner casing, and a bearing cavity disposed between the inner casing and a bearing housing. In addition, the turbine exhaust section includes a strut extending between the outer structure and the inner structure. The strut includes a first flow passage configured to flow a fluid from the inner cavity to the outer cavity.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: January 17, 2017
    Assignee: General Electric Company
    Inventors: Ravi Shankar Venkata Kasibhotla, Piotr Edward Kobek, Srinivasarao Pakkala, Radu Ioan Danescu, David Martin Johnson
  • Publication number: 20160348534
    Abstract: A turbine casing includes at least one shell adapted to enclose one or more turbine stages in a gas turbine engine; an air inlet in the at least one shell; a flow sleeve secured to an inside surface of the at least one shell, the flow sleeve comprising at least two arcuate segments. Each arcuate segment includes an arcuate base, a pair of sidewalls extending radially outwardly of the base thereby forming a circumferentially-extending flow channel defined by the base, the sidewalls and the inside surface. The air inlet is aligned with the flow channel and the sleeve is configured to distribute air flowing in the channel into spaces proximate the one or more turbine stages in circumferential, radial and axial directions, including along the inside surface of the at least one shell.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Inventors: Radu Ioan DANESCU, David Martin JOHNSON, Kenneth Damon BLACK, Christopher Paul COX, Ozgur BOZKURT
  • Patent number: 9506366
    Abstract: A helical seal system includes a first component, and a second component rotatable relative to the first component. The second component extends from a high pressure portion to a low pressure portion through an intermediate portion. A helical seal is provided on the intermediate portion of the second component. The helical seal includes at least one thread component having a pitch that is configured and disposed to draw fluids from the low pressure portion toward the high pressure portion when the second component is rotated.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: November 29, 2016
    Assignee: General Electric Company
    Inventors: Radu Ioan Danescu, David Martin Johnson
  • Patent number: 9488063
    Abstract: A clearance control system for a rotary machine includes an outer casing including an outer casing main portion having a first radial thickness, wherein the outer casing is configured to expand at a first time rate of thermal expansion. Also included is an inner casing disposed between the outer casing and a rotary portion, the inner casing including an inner casing main portion having a second radial thickness that is less than the first radial thickness, wherein the inner casing is configured to expand at a second time rate of thermal expansion that is greater than the first time rate of thermal expansion of the outer casing. Further included is an inner casing leg configured to separate from an outer casing leg during expansion of the inner casing and configured to engage the outer casing leg during contraction of the inner casing.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: November 8, 2016
    Assignee: General Electric Company
    Inventors: David Martin Johnson, Radu Ioan Danescu
  • Patent number: 9453429
    Abstract: A turbine casing includes at least one shell adapted to enclose one or more turbine stages in a gas turbine engine; an air inlet in the at least one shell; a flow sleeve secured to an inside surface of the at least one shell, the flow sleeve comprising at least two arcuate segments. Each arcuate segment includes an arcuate base, a pair of sidewalls extending radially outwardly of the base thereby forming a circumferentially-extending flow channel defined by the base, the sidewalls and the inside surface. The air inlet is aligned with the flow channel and the sleeve is configured to distribute air flowing in the channel into spaces proximate the one or more turbine stages in circumferential, radial and axial directions, including along the inside surface of the at least one shell.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: September 27, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Radu Ioan Danescu, David Martin Johnson, Kenneth Damon Black, Christopher Paul Cox, Ozgur Bozkurt
  • Patent number: 9422824
    Abstract: Thermal control is provided for a gas turbine casing by supplying thermal control gas from a compressor to a space between an outer casing and an inner casing, and transferring the thermal control gas from the space through the opening in the inner casing via a plurality of holes defined through a plate attached to an outer surface of the inner casing. The holes are arranged with a predetermined non-uniform distribution corresponding to a desired preferential impingement pattern for providing non-uniform heat transfer. A gas turbine thermal control assembly includes structure providing preferential heat transfer from the inner casing during operation of the gas turbine via a thermal control gas flow path from radially outside of the inner casing into the interior of the gas turbine.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: August 23, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Stephen Casavant, Kenneth Damon Black, David Martin Johnson, Radu Ioan Danescu
  • Patent number: 9238971
    Abstract: A device for directing gas impingement to an inner casing of a gas turbine may include a plate configured for attachment to the outer surface of the inner casing. The plate has a first surface opposing the inner casing when the plate is attached to an area of the inner casing and a second surface opposite the first surface. The plate defines a plurality of holes through the plate from the first surface to the second surface. The holes are arranged with a predetermined non-uniform distribution in the plate corresponding to a desired preferential impingement pattern for providing non-uniform heat transfer from the area during operation of the gas turbine so as to control temperature of the inner casing across the area. Various options and modifications are possible. Related gas turbine assemblies are also disclosed.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: January 19, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Stephen Casavant, Kenneth Damon Black, David Martin Johnson, Radu Ioan Danescu
  • Patent number: 8979477
    Abstract: A system is provided with a turbine exhaust strut configured to provide a bi-directional airflow. The turbine exhaust strut includes a first portion having a first flow passage configured to flow a fluid in a first direction between inner and outer exhaust walls of a turbine exhaust section, and a second portion having a second flow passage configured to flow the fluid in a second direction between the inner and outer exhaust walls of the turbine exhaust section. Furthermore, the first and second directions are opposite from one another.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: March 17, 2015
    Assignee: General Electric Company
    Inventors: David Martin Johnson, Radu Ioan Danescu, Srinivasarao Pakkala, Piotr Edward Kobek
  • Publication number: 20150071767
    Abstract: A clearance control system for a rotary machine includes an outer casing including an outer casing main portion having a first radial thickness, wherein the outer casing is configured to expand at a first time rate of thermal expansion. Also included is an inner casing disposed between the outer casing and a rotary portion, the inner casing including an inner casing main portion having a second radial thickness that is less than the first radial thickness, wherein the inner casing is configured to expand at a second time rate of thermal expansion that is greater than the first time rate of thermal expansion of the outer casing. Further included is an inner casing leg configured to separate from an outer casing leg during expansion of the inner casing and configured to engage the outer casing leg during contraction of the inner casing.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
    Applicant: General Electric Company
    Inventors: David Martin Johnson, Radu Ioan Danescu
  • Publication number: 20150040566
    Abstract: A helical seal system includes a first component, and a second component rotatable relative to the first component. The second component extends from a high pressure portion to a low pressure portion through an intermediate portion. A helical seal is provided on the intermediate portion of the second component. The helical seal includes at least one thread component having a pitch that is configured and disposed to draw fluids from the low pressure portion toward the high pressure portion when the second component is rotated.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 12, 2015
    Applicant: General Electric Company
    Inventors: Radu Ioan Danescu, David Martin Johnson
  • Publication number: 20140271111
    Abstract: A gas turbine engine system having a combustion section and a turbine section is provided. The turbine section includes at least one turbine stage having a plurality of turbine blades coupled to a rotor and an inner casing circumferentially disposed about the plurality of turbine blades. The turbine section includes an outer casing circumferentially disposed about at least a portion of the inner casing. The inner casing and the outer casing define a cavity comprising a volume configured to facilitate the distribution of air within the cavity to cool an outer surface of the inner casing and an inner surface of the outer casing. The outer casing comprises at least one air inlet and the inner casing comprises at least one air outlet. At least one flange is provided within the cavity, and the at least one flange flanks the air inlet and at least one flow guide.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Henry Grady Ballard, JR., Ozgur Bozkurt, Kenneth Damon Black, Radu Ioan Danescu
  • Publication number: 20140112759
    Abstract: A device for directing gas impingement to an inner casing of a gas turbine may include a plate configured for attachment to the outer surface of the inner casing. The plate has a first surface opposing the inner casing when the plate is attached to an area of the inner casing and a second surface opposite the first surface. The plate defines a plurality of holes through the plate from the first surface to the second surface. The holes are arranged with a predetermined non-uniform distribution in the plate corresponding to a desired preferential impingement pattern for providing non-uniform heat transfer from the area during operation of the gas turbine so as to control temperature of the inner casing across the area. Various options and modifications are possible. Related gas turbine assemblies are also disclosed.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Stephen Casavant, Kenneth Damon Black, David Martin Johnson, Radu Ioan Danescu
  • Publication number: 20140109590
    Abstract: Thermal control is provided for a gas turbine casing by supplying thermal control gas from a compressor to a space between an outer casing and an inner casing, and transferring the thermal control gas from the space through the opening in the inner casing via a plurality of holes defined through a plate attached to an outer surface of the inner casing. The holes are arranged with a predetermined non-uniform distribution corresponding to a desired preferential impingement pattern for providing non-uniform heat transfer. A gas turbine thermal control assembly includes structure providing preferential heat transfer from the inner casing during operation of the gas turbine via a thermal control gas flow path from radially outside of the inner casing into the interior of the gas turbine.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Stephen Casavant, Kenneth Damon Black, David Martin Johnson, Radu Ioan Danescu
  • Publication number: 20120227371
    Abstract: A system is provided with a turbine exhaust strut configured to provide a bi-directional airflow. The turbine exhaust strut includes a first portion having a first flow passage configured to flow a fluid in a first direction between inner and outer exhaust walls of a turbine exhaust section, and a second portion having a second flow passage configured to flow the fluid in a second direction between the inner and outer exhaust walls of the turbine exhaust section. Furthermore, the first and second directions are opposite from one another.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Martin Johnson, Radu Ioan Danescu, Srinivasarao Pakkala, Piotr Edward Kobek
  • Patent number: 8215914
    Abstract: A compliant seal assembly for sealing a gap between a dovetail tab of a bucket and a slot of a rotor. The compliant sealing assembly may include a sealing groove positioned about the slot and a compliant seal positioned about the sealing groove. The compliant seal is forced into the gap and about the dovetail tab when the bucket rotates.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: July 10, 2012
    Assignee: General Electric Company
    Inventors: Radu Ioan Danescu, John D. Ward
  • Publication number: 20100008782
    Abstract: A compliant seal assembly for sealing a gap between a dovetail tab of a bucket and a slot of a rotor. The compliant sealing assembly may include a sealing groove positioned about the slot and a compliant seal positioned about the sealing groove. The compliant seal is forced into the gap and about the dovetail tab when the bucket rotates.
    Type: Application
    Filed: July 8, 2008
    Publication date: January 14, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Radu Ioan Danescu, John D. Ward