Patents by Inventor Rafael Rios

Rafael Rios has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220028998
    Abstract: FETs including a gated oxide semiconductor spacer interfacing with a channel semiconductor. Transistors may incorporate a non-oxide channel semiconductor, and one or more oxide semiconductors disposed proximal to the transistor gate electrode and the source/drain semiconductor, or source/drain contact metal. In advantageous embodiments, the oxide semiconductor is to be gated by a voltage applied to the gate electrode (i.e., gate voltage) so as to switch the oxide semiconductor between insulating and semiconducting states in conjunction with gating the transistor's non-oxide channel semiconductor between on and off states.
    Type: Application
    Filed: October 11, 2021
    Publication date: January 27, 2022
    Applicant: Intel Corporation
    Inventors: Gilbert W. Dewey, Rafael Rios, Van H. Le, Jack T. Kavalieros
  • Publication number: 20210384419
    Abstract: Embodiments include a resistive random access memory (RRAM) storage cell, having a resistive switching material layer and a semiconductor layer between two electrodes, where the semiconductor layer serves as an OEL. In addition, the RRAM storage cell may be coupled with a transistor to form a RRAM memory cell. The RRAM memory cell may include a semiconductor layer as a channel for the transistor, and also shared with the storage cell as an OEL for the storage cell. A shared electrode may serve as a source electrode of the transistor and an electrode of the storage cell. In some embodiments, a dielectric layer may be shared between the transistor and the storage cell, where the dielectric layer is a resistive switching material layer of the storage cell.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 9, 2021
    Inventors: ABHISHEK A. SHARMA, VAN H. LE, GILBERT DEWEY, RAFAEL RIOS, JACK T. KAVALIEROS, SHRIRAM SHIVARAMAN
  • Patent number: 11189700
    Abstract: Embodiments of the invention include non-planar InGaZnO (IGZO) transistors and methods of forming such devices. In an embodiment, the IGZO transistor may include a substrate and an IGZO fin formed above the substrate. Embodiments may include a source contact and a drain contact that are formed adjacent to more than one surface of the IGZO fin. Additionally, embodiments may include a gate electrode formed between the source contact and the drain contact. The gate electrode may be separated from the IGZO layer by a gate dielectric. In one embodiment, the IGZO transistor is a finfet transistor. In another embodiment the IGZO transistor is a nanowire or a nanoribbon transistor. Embodiments of the invention may also include a non-planar IGZO transistor that is formed in the back end of line stack (BEOL) of an integrated circuit chip.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: November 30, 2021
    Assignee: Intel Corporation
    Inventors: Van H. Le, Rafael Rios, Gilbert Dewey, Jack T. Kavalieros, Marko Radosavljevic
  • Patent number: 11145739
    Abstract: FETs including a gated oxide semiconductor spacer interfacing with a channel semiconductor. Transistors may incorporate a non-oxide channel semiconductor, and one or more oxide semiconductors disposed proximal to the transistor gate electrode and the source/drain semiconductor, or source/drain contact metal. In advantageous embodiments, the oxide semiconductor is to be gated by a voltage applied to the gate electrode (i.e., gate voltage) so as to switch the oxide semiconductor between insulating and semiconducting states in conjunction with gating the transistor's non-oxide channel semiconductor between on and off states.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: October 12, 2021
    Assignee: Intel Corporation
    Inventors: Gilbert W. Dewey, Rafael Rios, Van H. Le, Jack T. Kavalieros
  • Patent number: 11139400
    Abstract: Non-planar semiconductor devices having hybrid geometry-based active regions are described. For example, a semiconductor device includes a hybrid channel region including a nanowire portion disposed above an omega-FET portion disposed above a fin-FET portion. A gate stack is disposed on exposed surfaces of the hybrid channel region. The gate stack includes a gate dielectric layer and a gate electrode disposed on the gate dielectric layer. Source and drain regions are disposed on either side of the hybrid channel region.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: October 5, 2021
    Assignee: Google LLC
    Inventors: Seiyon Kim, Rafael Rios, Fahmida Ferdousi, Kelin J. Kuhn
  • Publication number: 20210288108
    Abstract: Embodiments include a threshold switching selector. The threshold switching selector may include a threshold switching layer and a semiconductor layer between two electrodes. A memory cell may include the threshold switching selector coupled to a storage cell. The storage cell may be a PCRAM storage cell, a MRAM storage cell, or a RRAM storage cell. In addition, a RRAM device may include a RRAM storage cell, coupled to a threshold switching selector, where the threshold switching selector may include a threshold switching layer and a semiconductor layer, and the semiconductor layer of the threshold switching selector may be shared with the semiconductor layer of the RRAM storage cell.
    Type: Application
    Filed: September 23, 2016
    Publication date: September 16, 2021
    Inventors: ABHISHEK A. SHARMA, VAN H. LE, GILBERT DEWEY, RAFAEL RIOS, JACK T. KAVALIEROS, SHRIRAM SHIVARAMAN
  • Publication number: 20210226006
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Inventors: Kelin J. Kuhn, Seiyon Kim, Rafael Rios, Stephen M. Cea, Martin D. Giles, Annalisa Cappellani, Titash Rakshit, Peter Chang, Willy Rachmady
  • Publication number: 20210193814
    Abstract: FETs including a gated oxide semiconductor spacer interfacing with a channel semiconductor. Transistors may incorporate a non-oxide channel semiconductor, and one or more oxide semiconductors disposed proximal to the transistor gate electrode and the source/drain semiconductor, or source/drain contact metal. In advantageous embodiments, the oxide semiconductor is to be gated by a voltage applied to the gate electrode (i.e., gate voltage) so as to switch the oxide semiconductor between insulating and semiconducting states in conjunction with gating the transistor's non-oxide channel semiconductor between on and off states.
    Type: Application
    Filed: March 4, 2016
    Publication date: June 24, 2021
    Applicant: Intel Corporation
    Inventors: Gilbert W. Dewey, Rafael Rios, Van H. Le, Jack T. Kavalieros
  • Patent number: 11031503
    Abstract: Embodiments of the present disclosure describe a non-planar gate thin film transistor. An integrated circuit may include a plurality of layers formed on a substrate, and the plurality of layers may include a first one of a source or drain, an inter-layer dielectric (ILD) formed on the first one of the source or drain, and a second one of the source or drain formed on the ILD. A semiconductive layer may be formed on a sidewall of the plurality of layers. A gate dielectric layer formed on the semiconductive layer, and a gate may be in contact with the gate dielectric layer.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: June 8, 2021
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Gilbert Dewey, Rafael Rios, Jack T. Kavalieros, Yih Wang, Shriram Shivaraman
  • Patent number: 10991799
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: April 27, 2021
    Assignee: Sony Corporation
    Inventors: Kelin J. Kuhn, Seiyon Kim, Rafael Rios, Stephen M. Cea, Martin D. Giles, Annalisa Cappellani, Titash Rakshit, Peter Chang, Willy Rachmady
  • Patent number: 10964701
    Abstract: A charge storage memory is described based on a vertical shared gate thin-film transistor. In one example, a memory cell structure includes a capacitor to store a charge, the state of the charge representing a stored value, and an access transistor having a drain coupled to a bit line to read the capacitor state, a vertical gate coupled to a word line to write the capacitor state, and a drain coupled to the capacitor to charge the capacitor from the drain through the gate, wherein the gate extends from the word line through metal layers of an integrated circuit.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: March 30, 2021
    Assignee: Intel Corporation
    Inventors: Abhishek Anil Sharma, Van H. Le, Gilbert William Dewey, Rafael Rios, Jack T. Kavalieros, Yih Wang, Shriram Shivaraman
  • Patent number: 10950301
    Abstract: A two transistor, one resistor gain cell and a suitable storage element are described. In some embodiments the gain cell has a resistive memory element coupled to a common node at one end to store a value and to a source line at another end, the value being read as conductivity between the common node and the source line of the resistive memory element, a write transistor having a source coupled to a bit line, a gate coupled to a write line, and a drain coupled to the common node to write a value at the bit line to the resistive memory element upon setting the write line high, and a read transistor having a source coupled to a bit line read line and a gate coupled to the common node to read the value written to the resistive memory element as a value at the second transistor gate.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 16, 2021
    Assignee: Intel Corporation
    Inventors: Rafael Rios, Abhishek Anil Sharma, Van H. Le, Gilbert William Dewey, Jack T. Kavalieros
  • Patent number: 10930791
    Abstract: In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing bi-layer semiconducting oxides in a source/drain for low access and contact resistance of thin film transistors.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Van H. Le, Rafael Rios, Shriram Shivaraman, Jack T. Kavalieros, Marko Radosavljevic
  • Publication number: 20210050418
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Application
    Filed: September 4, 2020
    Publication date: February 18, 2021
    Inventors: Seiyon KIM, Kelin J. KUHN, Tahir GHANI, Anand S. MURTHY, Mark ARMSTRONG, Rafael RIOS, Abhijit Jayant PETHE, Willy RACHMADY
  • Publication number: 20210050455
    Abstract: Embodiments of the invention include non-planar InGaZnO (IGZO) transistors and methods of forming such devices. In an embodiment, the IGZO transistor may include a substrate and source and drain regions formed over the substrate. According to an embodiment, an IGZO layer may be formed above the substrate and may be electrically coupled to the source region and the drain region. Further embodiments include a gate electrode that is separated from the IGZO layer by a gate dielectric. In an embodiment, the gate dielectric contacts more than one surface of the IGZO layer. In one embodiment, the IGZO transistor is a finfet transistor. In another embodiment the IGZO transistor is a nanowire or a nanoribbon transistor. Embodiments of the invention may also include a non-planar IGZO transistor that is formed in the back end of line stack (BEOL) of an integrated circuit chip.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 18, 2021
    Inventors: Van H. LE, Gilbert DEWEY, Rafael RIOS, Jack T. KAVALIEROS, Marko RADOSAVLJEVIC, Kent E. MILLARD, Marc C. FRENCH, Ashish AGRAWAL, Benjamin CHU-KUNG, Ryan E. ARCH
  • Patent number: 10878889
    Abstract: A high retention time memory element is described that has dual gate devices. A memory element has a write transistor with a gate having a source coupled to a write bit line, a gate coupled to a write line, and a drain coupled to a storage node, wherein a value is written to the storage node by enabling the gate and applying the value to the bit line, and a read transistor having a source coupled to a read line, a gate coupled to the storage node, and a drain coupled to a read bit line, wherein the value of the storage node is sensed by applying a current to the source and reading the sense line to determine a status of the gate.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: December 29, 2020
    Assignee: Intel Corporation
    Inventors: Rafael Rios, Gilbert Dewey, Van H. Le, Jack Kavalieros, Mesut Meterelliyoz
  • Patent number: 10847653
    Abstract: Semiconductor devices having metallic source and drain regions are described. For example, a semiconductor device includes a gate electrode stack disposed above a semiconducting channel region of a substrate. Metallic source and drain regions are disposed above the substrate, on either side of the semiconducting channel region. Each of the metallic source and drain regions has a profile. A first semiconducting out-diffusion region is disposed in the substrate, between the semiconducting channel region and the metallic source region, and conformal with the profile of the metallic source region. A second semiconducting out-diffusion region is disposed in the substrate, between the semiconducting channel region and the metallic drain region, and conformal with the profile of the metallic drain region.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Martin D. Giles, Annalisa Cappellani, Sanaz Gardner, Rafael Rios, Cory E. Weber, Aaron A. Budrevich
  • Patent number: 10847656
    Abstract: Embodiments of the invention include non-planar InGaZnO (IGZO) transistors and methods of forming such devices. In an embodiment, the IGZO transistor may include a substrate and source and drain regions formed over the substrate. According to an embodiment, an IGZO layer may be formed above the substrate and may be electrically coupled to the source region and the drain region. Further embodiments include a gate electrode that is separated from the IGZO layer by a gate dielectric. In an embodiment, the gate dielectric contacts more than one surface of the IGZO layer. In one embodiment, the IGZO transistor is a finfet transistor. In another embodiment the IGZO transistor is a nanowire or a nanoribbon transistor. Embodiments of the invention may also include a non-planar IGZO transistor that is formed in the back end of line stack (BEOL) of an integrated circuit chip.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Van H. Le, Gilbert Dewey, Rafael Rios, Jack T. Kavalieros, Marko Radosavljevic, Kent E. Millard, Marc C. French, Ashish Agrawal, Benjamin Chu-Kung, Ryan E. Arch
  • Patent number: 10825752
    Abstract: Embodiments of the present disclosure describe techniques and configurations for integrated thermoelectric cooling. In one embodiment, a cooling assembly includes a semiconductor substrate, first circuitry disposed on the semiconductor substrate and configured to generate heat when in operation and second circuitry disposed on the semiconductor substrate and configured to remove the heat by thermoelectric cooling. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: November 3, 2020
    Assignee: Intel Corporation
    Inventors: Lei Jiang, Edwin B. Ramayya, Daniel Pantuso, Rafael Rios, Kelin J. Kuhn, Seiyon Kim
  • Patent number: 10804357
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: October 13, 2020
    Assignee: Sony Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Mark Armstrong, Rafael Rios, Abhijit Jayant Pethe, Willy Rachmady