Patents by Inventor Raghubir Gupta

Raghubir Gupta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11491457
    Abstract: Zinc oxide-based sorbents, and processes for preparing and using them are provided, wherein the sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents contain an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two-phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl2O4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 50 nm (500 Angstroms). Preferably the sorbents are prepared by using an alkali metal base to convert a precursor mixture, containing a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component, with the resulting sorbent having a sodium level within a desired range.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: November 8, 2022
    Assignee: Research Triangle Institute
    Inventors: Jian-Ping Shen, Jason S. Norman, Brian S. Turk, Raghubir Gupta
  • Publication number: 20220227677
    Abstract: Provided herein are systems for carbonation curing and CO2 mineralization of concrete composites and methods of manufacturing a carbonated concrete composite. A method of manufacturing a carbonated concrete composites includes contacting concrete with CO2-containing gas streams in the carbonation reactor having a gas stream inlet and an outlet to provide optimal gas flow distribution and gas velocity. The concrete precursor includes a binder, one or more aggregates, and water. A gas stream is received at the carbonation reactor. The gas stream includes carbon dioxide. The concrete precursor is maintained at a suitable temperature in the carbonation reactor to thereby react the concrete precursor with the gas stream to produce carbonate minerals in the carbonated concrete composite.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 21, 2022
    Inventors: Iman Mehdipour, Raghubir Gupta, Gabriel D. Falzone, Gaurav N. Sant, Dante Simonetti
  • Patent number: 9539541
    Abstract: The invention relates to a mixed salt composition which is useful as a CO2 sorbent. The mixed salt composition comprises a Mg salt, and at least one Group IA element salt, where the Mg and Group IA element are present at a molar ratio of from 3:1 to 8:1. The resulting composition can adsorb about 20% or more of CO2 in a gas. Via varying the molar ratios of the components, and the Group IA element, one can develop compositions which show optional functionality at different conditions. The composition is especially useful in the adsorptive capture of CO2 on mobile sources, such as transportation vehicles, where it can be recovered during regeneration of the adsorbent composition and the CO2 used as a coolant gas, as a reactant in manufacture of fuel, and so forth.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: January 10, 2017
    Assignees: SAUDI ARABIAN OIL COMPANY, RESEARCH TRIANGLE INSTITUTE
    Inventors: Esam Zaki Hamad, Wajdi Issam Al-Sadat, Luke Coleman, J. P. Shen, Raghubir Gupta
  • Publication number: 20080251423
    Abstract: A sorbent for use in removing sulfur contaminants from hydrocarbon feedstocks is provided, wherein the sorbent contains zinc aluminate in an amount of at least 40 wt % (calculated as ZnAl2O4); free alumina in an amount of from about 5 wt % to about 25 wt % (calculated as Al2O3); and iron oxide in an amount of from about 10 wt % to about 30 wt % (calculated as Fe2O3); wherein each of the free alumina and iron oxide are present in non-crystalline form as determined by X-ray diffraction analysis, and a method for producing the sorbent and method for using the sorbent to reduce sulfur contaminants in hydrocarbon feedstocks.
    Type: Application
    Filed: September 27, 2006
    Publication date: October 16, 2008
    Applicant: Research Triangle Institute
    Inventors: Brian S. Turk, Santosh K. Gangwal, Raghubir Gupta
  • Publication number: 20080026939
    Abstract: The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl2O4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 31, 2008
    Inventors: Santosh Gangwal, Brian Turk, Raghubir Gupta
  • Publication number: 20080022852
    Abstract: The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl2O4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 31, 2008
    Inventors: Santosh Gangwal, Brian Turk, Raghubir Gupta
  • Publication number: 20060067866
    Abstract: Reduced sulfur gas species (e.g., H2S, COS and CS2) are removed from a gas stream by compositions wherein a zinc titanate ingredient is associated with a metal oxide-aluminate phase material in the same particle species. Nonlimiting examples of metal oxides comprising the compositions include magnesium oxide, zinc oxide, calcium oxide, nickel oxide, etc.
    Type: Application
    Filed: March 2, 2004
    Publication date: March 30, 2006
    Applicants: Research Triangel Institute, INTERCAT, INC.
    Inventors: Albert Vierheilig, Raghubir Gupta, Brian Turk
  • Publication number: 20050098478
    Abstract: Processes are disclosed for removing sulfur, including cyclic and polycyclic organic sulfur components such as thiophenes and benzothiophenes, from a hydrocarbon feedstock including fuels and fuel components. The feedstock is contacted with a regenerable sorbent material capable of selectively adsorbing the sulfur compounds present in the hydrocarbon feedstock in the absence of a hydrodesulfurization catalyst. In one embodiment, the sorbent can be an active metal oxide sulfur sorbent in combination with a refractory inorganic oxide cracking catalyst support. In another embodiment, the sorbent can be a metal-substituted refractory inorganic oxide cracking catalyst wherein the metal is a metal which is capable in its oxide form, of adsorption of reduced sulfur compounds by conversion of the metal oxide to a metal sulfide. The processes are preferably carried out in a transport bed reactor.
    Type: Application
    Filed: September 12, 2001
    Publication date: May 12, 2005
    Inventors: Raghubir Gupta, Brian Turk
  • Publication number: 20050070430
    Abstract: The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl2O4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
    Type: Application
    Filed: September 26, 2003
    Publication date: March 31, 2005
    Applicant: Research Triangle Institute
    Inventors: Santosh Gangwal, Brian Turk, Raghubir Gupta