Patents by Inventor Raghuram Narayan

Raghuram Narayan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11894474
    Abstract: Embodiments disclosed herein include optoelectronic systems and methods of forming such systems. In an embodiment the optoelectronic system comprises a board, and a carrier attached to the board. In an embodiment, a first die is on the carrier. In an embodiment, the first die is a photonics die, and a surface of the first die is covered by an optically transparent layer.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: February 6, 2024
    Assignee: Intel Corporation
    Inventors: Priyanka Dobriyal, Ankur Agrawal, Susheel Jadhav, Quan Tran, Raghuram Narayan, Raiyomand Aspandiar, Kenneth Brown, John Heck
  • Publication number: 20230152661
    Abstract: Optical modulators are described having a Mach-Zehnder interferometer and a pair of RF electrodes interfaced with the Mach-Zehnder interferometer in which the Mach-Zehnder interferometer comprises optical waveguides formed from semiconductor material. The optical modulator also comprises a ground plane spaced away in a distinct plane from transmission line electrodes formed from the association of the pair of RF electrodes interfaced with the Mach-Zehnder interferometer. The ground plane can be associated with a submount in which an optical chip comprising the Mach-Zehnder interferometer and the pair of RF electrodes is mounted on the submount with the two semiconductor optical waveguides are oriented toward the submount. Methods for forming the modulators are described.
    Type: Application
    Filed: January 17, 2023
    Publication date: May 18, 2023
    Inventors: Chengkun Chen, Maxime Poirier, Raghuram Narayan, Milind Gokhale, Marcel G. Boudreau
  • Publication number: 20230087429
    Abstract: Embodiments herein relate to a photonic integrated circuit (PIC). The PIC may include a transmit module and a receive module. An optical port of the PIC may be coupled to the transmit module or the receive module. A semiconductor optical amplifier (SOA) may be positioned in a signal pathway between the optical port and the transmit module or the receive module. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: November 29, 2022
    Publication date: March 23, 2023
    Inventors: Giovanni Gilardi, Haijiang Yu, Ansheng Liu, Xiaoxing Zhu, Yuliya Akulova, Raghuram Narayan, Pierre Doussiere, Christian Malouin, Olufemi Dosunmu
  • Patent number: 11573476
    Abstract: Optical modulators are described having a Mach-Zehnder interferometer and a pair of RF electrodes interfaced with the Mach-Zehnder interferometer in which the Mach-Zehnder interferometer comprises optical waveguides formed from semiconductor material. The optical modulator also comprises a ground plane spaced away in a distinct plane from transmission line electrodes formed from the association of the pair of RF electrodes interfaced with the Mach-Zehnder interferometer. The ground plane can be associated with a submount in which an optical chip comprising the Mach-Zehnder interferometer and the pair of RF electrodes is mounted on the submount with the two semiconductor optical waveguides are oriented toward the submount. Methods for forming the modulators are described.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: February 7, 2023
    Assignee: NeoPhotonics Corporation
    Inventors: Chengkun Chen, Maxime Poirier, Raghuram Narayan, Milind Gokhale, Marcel G. Boudreau
  • Publication number: 20220271855
    Abstract: Optical and electrical modules with enhanced features and associated apparatus and methods. The optical modules are configured to implement one or more features that are offloaded from Ethernet devices to which the optical modules are configured to be attached. The features include support for timestamping packets and preamble using IEEE 1588 Precision Time Protocol (PTP) profiles, support for implementing IEEE 1588 one-step operations, support for implementing IEEE 1588 Ethernet Synchronous Clocks (SyncE) profiles, support for In-Band Network Telemetry (INT), and support for implementing a MACsec security protocol defined by IEEE standard 802.1AD. The enhanced features provided by the optical modules enable Ethernet devices to be upgraded to support the enhanced features by replacing conventional optical modules with the optical modules disclosed herein. Support for White Rabbit IEEE PTP and SyncE profiles is also provided.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: Daniel Christian BIEDERMAN, Pat WANG, Mark BORDOGNA, Raghuram NARAYAN, Renuka SAPKAL
  • Publication number: 20220199486
    Abstract: A semiconductor package comprises a substrate and a ceramic carrier mounted to the substrate. An integrated circuit (IC) die is mounted to the ceramic carrier. A heat extraction path away from the IC die comprises: i) a thermal interface material over the IC die, the thermal interface material having a thickness of approximately 25 to 80 um; ii) an integrated heat spreader over the thermal interface material; iii) a ceramic carrier plate over the integrated heat spreader; and iv) an electrically conductive thermal pad between the ceramic carrier plate and a housing of the semiconductor package.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: Aditi MALLIK, Chen ZHUANG, Raghuram NARAYAN
  • Publication number: 20210074866
    Abstract: Embodiments disclosed herein include optoelectronic systems and methods of forming such systems. In an embodiment the optoelectronic system comprises a board, and a carrier attached to the board. In an embodiment, a first die is on the carrier. In an embodiment, the first die is a photonics die, and a surface of the first die is covered by an optically transparent layer.
    Type: Application
    Filed: September 6, 2019
    Publication date: March 11, 2021
    Inventors: Priyanka DOBRIYAL, Ankur AGRAWAL, Susheel JADHAV, Quan TRAN, Raghuram NARAYAN, Raiyomand ASPANDIAR, Kenneth BROWN, John HECK
  • Patent number: 10877350
    Abstract: Embodiments may relate to a segment driver that is to be coupled with a modulator segment of a Mach-Zehnder modulator. The segment driver may include a continuous-time linear equalizer (CTLE) incorporated within an amplifier stage of the modulator. The CTLE may be configured to identify an electrical signal that is related to an optical signal of the Mach-Zehnder modulator; reduce inter-symbol interference (ISI) of the electrical signal to generate a processed electrical signal; and output the processed electrical signal to the amplifier stage. Other embodiments may be described or claimed.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: December 29, 2020
    Assignee: Intel Corporation
    Inventors: Syed S. Islam, Raghuram Narayan, Syed Reza Bahadur, Bharadwaj Parthasarathy
  • Publication number: 20200348577
    Abstract: Optical modulators are described having a Mach-Zehnder interferometer and a pair of RF electrodes interfaced with the Mach-Zehnder interferometer in which the Mach-Zehnder interferometer comprises optical waveguides formed from semiconductor material. The optical modulator also comprises a ground plane spaced away in a distinct plane from transmission line electrodes formed from the association of the pair of RF electrodes interfaced with the Mach-Zehnder interferometer. The ground plane can be associated with a submount in which an optical chip comprising the Mach-Zehnder interferometer and the pair of RF electrodes is mounted on the submount with the two semiconductor optical waveguides are oriented toward the submount. Methods for forming the modulators are described.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Inventors: Chengkun Chen, Maxime Poirier, Raghuram Narayan, Milind Gokhale, Marcel G. Boudreau
  • Patent number: 10790910
    Abstract: Embodiments may relate to an optical modulator system. The optical modulator system may include a first photodiode to measure a first optical level at an output of a Mach-Zehnder modulator (MZM). The system may further include a second photodiode to measure a second optical level at a termination of the MZM. The system may further include a logic coupled with the first photodiode and the second photodiode, the logic to identify a modulator bias that minimizes the first optical level. Other embodiments may be described or claimed.
    Type: Grant
    Filed: December 22, 2018
    Date of Patent: September 29, 2020
    Assignee: Intel Corporation
    Inventors: Hyoung-Jun Kim, Hwee Chin Ong, Sang Yup Kim, Raghuram Narayan, Jeffrey B. Driscoll, Woosung Kim
  • Patent number: 10761396
    Abstract: Optical modulators are described having a Mach-Zehnder interferometer and a pair of RF electrodes interfaced with the Mach-Zehnder interferometer in which the Mach-Zehnder interferometer comprises optical waveguides formed from semiconductor material. The optical modulator also comprises a ground plane spaced away in a distinct plane from transmission line electrodes formed from the association of the pair of RF electrodes interfaced with the Mach-Zehnder interferometer. The ground plane can be associated with a submount in which an optical chip comprising the Mach-Zehnder interferometer and the pair of RF electrodes is mounted on the submount with the two semiconductor optical waveguides are oriented toward the submount. Methods for forming the modulators are described.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: September 1, 2020
    Assignee: NeoPhotonics Corporation
    Inventors: Chengkun Chen, Maxime Poirier, Raghuram Narayan, Milind Gokhale, Marcel G. Boudreau
  • Publication number: 20190149241
    Abstract: Embodiments may relate to an optical modulator system. The optical modulator system may include a first photodiode to measure a first optical level at an output of a Mach-Zehnder modulator (MZM). The system may further include a second photodiode to measure a second optical level at a termination of the MZM. The system may further include a logic coupled with the first photodiode and the second photodiode, the logic to identify a modulator bias that minimizes the first optical level. Other embodiments may be described or claimed.
    Type: Application
    Filed: December 22, 2018
    Publication date: May 16, 2019
    Applicant: Intel Corporation
    Inventors: Hyoung-Jun Kim, Hwee Chin Ong, Sang Yup Kim, Raghuram Narayan, Jeffrey B. Driscoll, Woosung Kim
  • Publication number: 20190137842
    Abstract: Embodiments may relate to a segment driver that is to be coupled with a modulator segment of a Mach-Zehnder modulator. The segment driver may include a continuous-time linear equalizer (CTLE) incorporated within an amplifier stage of the modulator. The CTLE may be configured to identify an electrical signal that is related to an optical signal of the Mach-Zehnder modulator; reduce inter-symbol interference (ISI) of the electrical signal to generate a processed electrical signal; and output the processed electrical signal to the amplifier stage. Other embodiments may be described or claimed.
    Type: Application
    Filed: December 24, 2018
    Publication date: May 9, 2019
    Applicant: Intel Corporation
    Inventors: Syed S. Islam, Raghuram Narayan, Syed Reza Bahadur, Bharadwaj Parthasarathy
  • Publication number: 20180252982
    Abstract: Optical modulators are described having a Mach-Zehnder interferometer and a pair of RF electrodes interfaced with the Mach-Zehnder interferometer in which the Mach-Zehnder interferometer comprises optical waveguides formed from semiconductor material. The optical modulator also comprises a ground plane spaced away in a distinct plane from transmission line electrodes formed from the association of the pair of RF electrodes interfaced with the Mach-Zehnder interferometer. The ground plane can be associated with a submount in which an optical chip comprising the Mach-Zehnder interferometer and the pair of RF electrodes is mounted on the submount with the two semiconductor optical waveguides are oriented toward the submount. Methods for forming the modulators are described.
    Type: Application
    Filed: March 17, 2017
    Publication date: September 6, 2018
    Inventors: Chengkun Chen, Maxime Poirier, Raghuram Narayan, Milind Gokhale, Marcel G. Boudreau
  • Patent number: 8000368
    Abstract: Many approaches to tunable lasers use an array of DFBs, where each element of the array has a different wavelength. In some operations one element of the array is activated at a time depending on the desired wavelength. For modulated applications, an RF voltage is applied to a specific element of the DFB array, generally using an RF switch. In standard configurations, the demands on the switch are relatively difficult, generally requiring low RF insertion loss and good high frequency performance to 10 GHz. The DFB arrays are generally common cathode or common anode, depending on the type of the substrate used to fabricate the devices. Described herein is an array with a common cathode or anode configuration using a MEMS based switch that shorts the selected laser to RF ground. With this topology, preferably the off-state capacitance should be low with the MEMS switch.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: August 16, 2011
    Assignee: Santur Corporation
    Inventors: Bardia Pezeshki, Raghuram Narayan
  • Patent number: 7489609
    Abstract: A method of writing a mark to an optical disc includes receiving data to be written and generating a control signal for a laser pulse having a melt period that transitions to a growth period wherein the melt period is characterized by a melt power and the growth period is characterized by a growth power.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: February 10, 2009
    Assignee: LSI Logic Corporation
    Inventors: Kunjithapatham Balasubramanian, Hans Henry Hieslmair, Raghuram Narayan, Judith C. Powelson, Jason M. Stinebaugh, David K. Warland, Ting Zhou
  • Publication number: 20080025359
    Abstract: Many approaches to tunable lasers use an array of DFBs, where each element of the array has a different wavelength. In some operations one element of the array is activated at a time depending on the desired wavelength. For modulated applications, an RF voltage is applied to a specific element of the DFB array, generally using an RF switch. In standard configurations, the demands on the switch are relatively difficult, generally requiring low RF insertion loss and good high frequency performance to 10 GHz. The DFB arrays are generally common cathode or common anode, depending on the type of the substrate used to fabricate the devices. Described herein is an array with a common cathode or anode configuration using a MEMS based switch that shorts the selected laser to RF ground. With this topology, preferably the off-state capacitance should be low with the MEMS switch.
    Type: Application
    Filed: July 26, 2007
    Publication date: January 31, 2008
    Inventors: Bardia Pezeshki, Raghuram Narayan
  • Publication number: 20080002746
    Abstract: External cavity optical transmitters are disclosed which include a gain chip and a mirror that define an optical cavity. The transmitters further include a modulator operated at or near the same temperature as the gain chip. In some examples, the optical transmitters are temperature controlled to optimize the efficiency and wavelength stability thereof, while maintaining acceptable chirp performance of the modulator. In some examples, the optical transmitters include an electro-optic module disposed within the optical cavity to change the path length thereof so that the efficiency and wavelength stability of the transmitter is optimized.
    Type: Application
    Filed: December 22, 2006
    Publication date: January 3, 2008
    Inventor: Raghuram Narayan
  • Publication number: 20070297310
    Abstract: A method of writing a mark to an optical disc includes receiving data to be written and generating a control signal for a laser pulse having a melt period that transitions to a growth period wherein the melt period is characterized by a melt power and the growth period is characterized by a growth power.
    Type: Application
    Filed: September 4, 2007
    Publication date: December 27, 2007
    Inventors: Kunjithapatham Balasubramanian, Hans Hieslmair, Raghuram Narayan, Judith Powelson, Jason Stinebaugh, David Warland, Ting Zhou
  • Patent number: 7301883
    Abstract: A method of writing a mark to an optical disc includes receiving data to be written and generating a control signal for a laser pulse having a melt period that transitions to a growth period wherein the melt period is characterized by a melt power and the growth period is characterized by a growth power.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: November 27, 2007
    Assignee: LSI Corporation
    Inventors: Kunjithapatham Balasubramanian, Hans Henry Hieslmair, Raghuram Narayan, Judith C. Powelson, Jason M. Stinebaugh, David K. Warland, Ting Zhou