Patents by Inventor Rahul Kamath

Rahul Kamath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145686
    Abstract: In some embodiments, an electrode can include a current collector, a composite material in electrical communication with the current collector, and at least one phase configured to adhere the composite material to the current collector. The current collector can include one or more layers of metal, and the composite material can include electrochemically active material. The at least one phase can include a compound of the metal and the electrochemically active material. In some embodiments, a composite material can include electrochemically active material. The composite material can also include at least one phase configured to bind electrochemically active particles of the electrochemically active material together. The at least one phase can include a compound of metal and the electrochemically active material.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Inventors: David Lee, Xiaohua Liu, Monika Chhorng, Jeff Swoyer, Benjamin Yong Park, Rahul Kamath
  • Patent number: 11916228
    Abstract: In some embodiments, an electrode can include a current collector, a composite material in electrical communication with the current collector, and at least one phase configured to adhere the composite material to the current collector. The current collector can include one or more layers of metal, and the composite material can include electrochemically active material. The at least one phase can include a compound of the metal and the electrochemically active material. In some embodiments, a composite material can include electrochemically active material. The composite material can also include at least one phase configured to bind electrochemically active particles of the electrochemically active material together. The at least one phase can include a compound of metal and the electrochemically active material.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: February 27, 2024
    Assignee: Enevate Corporation
    Inventors: David Lee, Xiaohua Liu, Monika Chhorng, Jeff Swoyer, Benjamin Yong Park, Rahul Kamath
  • Patent number: 11901543
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: February 13, 2024
    Assignee: ENEVATE CORPORATION
    Inventors: Monika Chhorng, David J. Lee, Rahul Kamath
  • Publication number: 20230361287
    Abstract: Systems and methods are provided for silicon-dominant electrodes for energy storage using wet oxidized silicon by acid. Silicon may be treated by wet oxidization treatment using acid. The acid may be a nitric acid. Treated silicon may include silicon particles, with each silicon particle including an oxide surface layer formed as a result of the wet oxidization treatment. The wet oxidization treatment may include immersing untreated silicon powder in an acid, dispersing the silicon power continuously, and after an immersion period of pre-determined duration, filtering the silicon powder from the acid.
    Type: Application
    Filed: May 5, 2022
    Publication date: November 9, 2023
    Inventors: Rahul Kamath, Ian Browne
  • Patent number: 11695106
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: July 4, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Monika Chhorng, David J. Lee, Rahul Kamath
  • Publication number: 20230187604
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.
    Type: Application
    Filed: September 15, 2022
    Publication date: June 15, 2023
    Inventors: MONIKA CHHORNG, DAVID J. LEE, RAHUL KAMATH
  • Patent number: 11594733
    Abstract: Systems and methods utilizing aqueous-based polymer binders for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and an aqueous-based suspension-solution binder composition comprising a water soluble (aqueous-based) polymer as part of a multi-component binder composition that also contains an water insoluble polymer. The electrode coating layer may include more than 70% silicon and the anode may be in a lithium ion battery.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: February 28, 2023
    Assignee: Enevate Corporation
    Inventors: Sanjaya Perera, Benjamin Yong Park, Rahul Kamath, Younes Ansari
  • Publication number: 20220376233
    Abstract: In some embodiments, an electrode can include a current collector, a composite material in electrical communication with the current collector, and at least one phase configured to adhere the composite material to the current collector. The current collector can include one or more layers of metal, and the composite material can include electrochemically active material. The at least one phase can include a compound of the metal and the electrochemically active material. In some embodiments, a composite material can include electrochemically active material. The composite material can also include at least one phase configured to bind electrochemically active particles of the electrochemically active material together. The at least one phase can include a compound of metal and the electrochemically active material.
    Type: Application
    Filed: June 6, 2022
    Publication date: November 24, 2022
    Inventors: David Lee, Xiaohua Liu, Monika Chhorng, Jeff Swoyer, Benjamin Yong Park, Rahul Kamath
  • Patent number: 11450841
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 20, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Monika Chhorng, David J. Lee, Rahul Kamath
  • Publication number: 20220263059
    Abstract: Systems and methods are provided for heat treatment of whole cell structures. A battery may be formed based on applying of heat treatment to a whole cell composition that includes, at least, both anode material and cathode material, such that the anode material and the cathode material are heat treated at the same time. The heat treatment may include pyrolysis. The whole cell composition, and the corresponding cell formed based thereon, may include solid state electrolyte.
    Type: Application
    Filed: May 5, 2022
    Publication date: August 18, 2022
    Inventors: Qian Huang, Benjamin Park, Ian Browne, Rahul Kamath, David J. Lee
  • Publication number: 20220231271
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 21, 2022
    Inventors: MONIKA CHHORNG, DAVID J. LEE, RAHUL KAMATH
  • Patent number: 11329267
    Abstract: Systems and methods are provided for heat treatment of whole cell structures. A battery may be formed based on applying of heat treatment to a whole cell composition that includes, at least, both anode material and cathode material, such that the anode material and the cathode material are heat treated at the same time. The heat treatment may include pyrolysis. The whole cell composition, and the corresponding cell formed based thereon, may include solid state electrolyte.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: May 10, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Qian Huang, Benjamin Park, Ian Browne, Rahul Kamath, David J. Lee
  • Publication number: 20220115651
    Abstract: Systems and methods utilizing aqueous-based polymer binders for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and a water soluble polymer and may comprise one or more of the following materials: pH modifiers, viscosity modifiers, strengthening additives, surfactants and anti-foaming agents. The electrode coating layer may include more than 70% silicon and the anode may be in a lithium ion battery.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 14, 2022
    Inventors: Younes Ansari, Benjamin Park, Sanjaya Perera, Qing Zhang, Anil Malhotra, Ambica Nair, Rahul Kamath, Ian Browne, Frederic Bonhomme
  • Patent number: 11296311
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: April 5, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Monika Chhorng, David J. Lee, Rahul Kamath
  • Publication number: 20220102713
    Abstract: Systems and methods utilizing aqueous-based polymer binders for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and a water soluble polymer and may comprise one or more of the following materials: pH modifiers, viscosity modifiers, strengthening additives, surfactants and anti-foaming agents. The electrode coating layer may include more than 70% silicon and the anode may be in a lithium ion battery.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 31, 2022
    Inventors: Younes Ansari, Benjamin Park, Sanjaya Perera, Qing Zhang, Anil Malhotra, Ambica Nair, Rahul Kamath, Lan Browne, Frederic Bonhomme
  • Publication number: 20210288304
    Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include forming an anode by pyrolyzing an active material layer comprising a binder and silicon particles in a temperature range of 600 to 800° C.; and forming a battery cell comprising a cathode, an electrolyte, and the anode, where the anode comprises the pyrolyzed active material layer on a current collector. A lateral expansion of the anode during operation may be less than 2%, less than 1%, or less than 0.6%. The active material layer may be pyrolyzed on the current collector or may be pyrolyzed on a substrate before laminating on the current collector. The anode active material layer may be pyrolyzed using a 1 hour dwell time or less or using a 2 hour dwell time or less. The active material layer may be pyrolyzed in a temperature range of 650 to 800° C.
    Type: Application
    Filed: April 27, 2021
    Publication date: September 16, 2021
    Inventors: Rahul Kamath, Fred Bonhomme, Ian Browne
  • Publication number: 20210143392
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Inventors: MONIKA CHHORNG, DAVID J. LEE, RAHUL KAMATH
  • Publication number: 20210143394
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon- dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 13, 2021
    Inventors: MONIKA CHHORNG, DAVID J. LEE, RAHUL KAMATH
  • Publication number: 20210143426
    Abstract: Systems and methods for batteries comprising a cathode, an electrolyte, and an anode, wherein sacrificial salts and prelithiation reagents are added to the cathode as functional additives for electrochemical prelithiation.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 13, 2021
    Inventors: Rahul Kamath, Frederic Bonhomme, Qian Huang, Heidi Anderson, Ian Browne, David J. Lee, Sanjaya Perera, Younes Ansari
  • Publication number: 20210143393
    Abstract: Systems and methods are provided for heat treatment of whole cell structures. A battery may be formed based on applying of heat treatment to a whole cell composition that includes, at least, both anode material and cathode material, such that the anode material and the cathode material are heat treated at the same time. The heat treatment may include pyrolysis. The whole cell composition, and the corresponding cell formed based thereon, may include solid state electrolyte.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Inventors: Qian Huang, Benjamin Park, Ian Browne, Rahul Kamath, David J. Lee