Patents by Inventor Rainer Hilbig

Rainer Hilbig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9873078
    Abstract: The invention relates to an oxygen separator (10), comprising at least one oxygen separation device (12, 14) comprising an oxygen separation sorbent (16, 18) for separating oxygen from an oxygen comprising gas, wherein the oxygen separation device (12, 14) comprises a gas inlet (24, 28) at a primary side being connected to an inlet conduct (20) for guiding a flow of oxygen comprising gas into the oxygen separation device (12, 14) and having a gas outlet (34, 36) at a secondary side being connected to an outlet conduct (30, 32) for guiding a flow of oxygen enriched gas out of the oxygen separation device (12, 14), wherein the secondary side of the oxygen separation device (12, 14) is further connected to a source of purging gas for guiding purging gas through the oxygen separation device (12, 14) and wherein the primary side of the oxygen separation device (12, 14) is connected to an exhaust conduct (70, 72) for guiding exhaust gas out of the oxygen separator (10), wherein the oxygen separator (10) further com
    Type: Grant
    Filed: February 15, 2014
    Date of Patent: January 23, 2018
    Assignee: KONINKLIJKE PHILIPS N.V
    Inventors: Achim Gerhard Rolf Koerber, Rainer Hilbig, Paul Van Der Sluis
  • Publication number: 20170281897
    Abstract: According to one aspect, there is provided a device (4) for providing supplemental oxygen to a subject (8), the device (4) comprising a subject interface (10) through which the subject (8) can inhale; a container (12) that has a first outlet (18) connected to the subject interface (10) to allow gas with an elevated oxygen level stored in the container (12) to be inhaled by the subject (8), a first inlet (24), and a material (15) for removing a specific gas from air passing through the container (12) to increase the oxygen content of the air passing through the container (12); and an air blower (14) that is connected to the first inlet (24) of the container (12) and that is configured to supply air into the container (12) as the subject (8) uses the device (4).
    Type: Application
    Filed: August 18, 2015
    Publication date: October 5, 2017
    Inventors: TEUNIS JOHANNES VINK, RAINER HILBIG, ACHIM GERHARD ROLF KOERBER, DENNY MATHEW, EDWIN VAN RUTTEN, JULIANA PAULINE KELLY
  • Patent number: 9776161
    Abstract: The present invention relates to a method for generating nitric oxide, which comprises the steps of: providing a precursor solution comprising a nitric oxide precursor in a first reservoir (12), guiding the precursor solution through a reaction chamber (16), thereby subjecting the precursor solution to radiation to generate nitric oxide, guiding the generated nitric oxide out of the reaction chamber (16) by a stream of carrier gas, and guiding the reacted solution into a second reservoir (14). The method according to the invention provides a method of generating nitric oxide, or a flow of nitric oxide comprising gas, in which the concentration of the nitric oxide may be kept especially constant. Also claimed is an apparatus for generating nitric oxide comprising reservoirs for the precursor solution and the reacted solution and a reaction chamber.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: October 3, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Claudia Hannelore Igney, Rainer Hilbig, Achim Gerhard Rolf Koerber
  • Publication number: 20170101314
    Abstract: The present invention relates to a method of generating oxygen. The method addresses the objects of reducing the servicing work and improving the purity of the generated oxygen. According to the invention, the method comprises the steps of: providing an oxygen comprising gas at a primary side of a dense voltage drivable membrane; applying a voltage between a conductive element at the primary side of the membrane and a conductive element at a secondary side of the membrane, the conductive elements being electrically connected to the membrane, wherein a plasma is generated at at least one of the primary side and the secondary side of the membrane, the plasma being used as conductive element.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Rainer HILBIG, Achim Gerhard Rolf KOERBER, Mareike KLEE, Wilhelmus Cornelis KEUR
  • Patent number: 9592469
    Abstract: The present invention refers to an oxygen separation device (12, 14) for a pressure swing adsorption system. In order to provide at least one of improved maintenance behavior, longer lifetime and improved energy consumption, the oxygen separation device (12, 14) comprises a gas inlet (18, 22) at a primary side for guiding a flow of oxygen comprising gas into the oxygen separation device (12, 14) and a gas outlet (28, 30) at a secondary side for guiding a flow of oxygen enriched gas out of the oxygen separation device (12, 14), an oxygen separation membrane (78) comprising an oxygen separation sorbent being capable of separating oxygen from an oxygen comprising gas by sorbing at least one component of the oxygen comprising gas apart from oxygen, and a support structure (80) for supporting the oxygen separation membrane (78), wherein the support structure (80) comprises a plurality of support bars (82) being fixed to the oxygen separation membrane (78).
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: March 14, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Mareike Klee, Rainer Hilbig, Robert William Murdoch, Achim Gerhard Rolf Koerber, Wilhelmus Cornelis Keur, Paul Van Der Sluis
  • Patent number: 9556028
    Abstract: The present invention relates to a method of generating oxygen. The method addresses the objects of reducing the servicing work and improving the purity of the generated oxygen. According to the invention, the method comprises the steps of: providing an oxygen comprising gas at a primary side of a dense voltage drivable membrane (12); applying a voltage between a conductive element at the primary side of the membrane (12) and a conductive element at a secondary side of the membrane (12), the conductive elements being electrically connected to the membrane (12), wherein a plasma (18, 20) is generated at at least one of the primary side and the secondary side of the membrane (12), the plasma (18, 20) being used as conductive element.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: January 31, 2017
    Assignee: KONINKLIJKE PHILISP N.V.
    Inventors: Rainer Hilbig, Achim Gerhard Rolf Koerber, Mareike Klee, Wilhelmus Cornelis Keur
  • Patent number: 9504953
    Abstract: The invention relates to a method of separating oxygen from an oxygen comprising gas, the method comprising the steps of: performing at least a first and a second period of oxygen separation, the first and the second period of oxygen separation each comprising the steps of guiding an oxygen comprising gas to the primary side of an oxygen separation device (12, 14), the oxygen separation device (12, 14) comprising an oxygen separation sorbent (16, 18), and generating a flow of oxygen enriched gas out of the oxygen separation device (12, 14) by creating a pressure difference between the primary side and the secondary side of the oxygen separation device (12, 14), and performing a cooling period between the first and the second period of oxygen separation, wherein the cooling period comprises the steps of guiding a flushing sorbate through the oxygen separation device (12, 14), the flushing sorbate having an adsorption energy e1 with respect to the oxygen separation sorbent (16, 18), and guiding a cooling sorbat
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: November 29, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rainer Hilbig, Achim Gerhard Rolf Koerber, Paul Van Der Sluis, Mareike Klee, Wilhelmus Cornelis Keur
  • Patent number: 9486730
    Abstract: The invention relates to an oxygen separation device (12, 14), comprising a gas inlet (29, 31) at a primary side for guiding a flow of oxygen comprising gas into the oxygen separation device (12, 14) and having a gas outlet (33, 35) at a secondary side for guiding a flow of oxygen enriched gas out of the oxygen separation device (12, 14), at least one oxygen separation area (20, 22) with an oxygen separation sorbent (16, 18) being capable of separating oxygen from an oxygen comprising gas by sorbing at least one component of the oxygen comprising gas apart from oxygen and being contaminatable by a contaminant, and a decontamination area (21, 23) with a decontamination material (17, 19) for decontaminating the oxygen comprising gas from at least one contaminant, wherein the oxygen separation area (20, 22) and the decontamination area (21, 23) are fluidly connected by a spacer (76, 78) comprising at least one diffusion reducing channel (80, 82), wherein the spacer (76, 78) has a value of diffusion reduction rR
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: November 8, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Peter Lower Bliss, Rainer Hilbig, Joseph Thomas Dolensky, Achim Gerhard Rolf Koerber, Paul Van Der Sluis, Mareike Klee, Wilhelmus Cornelis Keur
  • Publication number: 20160310887
    Abstract: The invention relates to an a sensor system (100) for quantitatively detecting at least one compound in a fluid mixture, said fluid mixture comprising the compound to be detected, wherein the sensor system (100) comprises a sorbent material (102) being capable of sorbing the at least one compound to be detected, wherein the sorbent material (102) undergoes a temperature change when sorbing the at least one compound; at least a first temperature sensor (104) for measuring the temperature of the sorbent material (102); and a control unit (110) being adapted for quantitatively determining the at least one compound to be detected based on the temperature change of the sorbent material (102). Such a sensor system (100) provides an improved measurement especially in the field of oxygen concentrators. The invention further relates to an oxygen concentrator (10) for generating oxygen enriched gas as well as to a method of quantitatively detecting at least one compound in a fluid mixture.
    Type: Application
    Filed: December 15, 2014
    Publication date: October 27, 2016
    Inventors: PAUL VAN DER SLUIS, ACHIM GERHARD ROLF KOERBER, RAINER HILBIG, WILHELMUS CORNELIS KEUR
  • Patent number: 9457049
    Abstract: The present invention relates to a method for generating nitric oxide, in particular for therapeutic applications, which comprises the steps of: guiding a process gas into a reaction chamber (12), wherein the process gas comprises nitrous oxide in a carrier gas in a concentration in the range of ?2 vol-%, in particular in the range of ?10-3 vol-% to ?1 vol-%, and heating the process gas to a temperature which is sufficiently high to enable a reaction of nitrous oxide to form nitric oxide, thereby forming a gas which at least partly comprises nitric oxide. This method allows generating nitric oxide without remarkable concentrations of toxic nitrogen oxides, in particular of nitrogen dioxide. The method according to the invention is particularly suitable for therapeutic applications.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: October 4, 2016
    Assignee: KONKLIJKE PHILIPS N.V.
    Inventors: Achim Gerhard Rolf Koerber, Rainer Hilbig
  • Publication number: 20160134124
    Abstract: A power supply system comprises a fuel cell and a battery, each for supplying electrical power to a load. The system is controlled to use the fuel cell for a first period of time (82) to supply electrical power to the load, wherein the power demand is constant over a first time period (82). The battery is used simultaneously with the fuel cell for a second supply time of electrical power to the load, wherein the power varies (84). In this way, fluctuating output is provided by the battery, and the fuel cell output is maintained as constant as possible to prolong the lifetime. During the second supply time, the power to the load (80) can be provided as a constant contribution from the fuel cell and a variable contribution from the battery.
    Type: Application
    Filed: June 3, 2014
    Publication date: May 12, 2016
    Inventors: BJORN CHRISTIAAN WOUTER KAAG, RAINER HILBIG, MAREIKE KLEE
  • Publication number: 20160001216
    Abstract: The invention relates to an oxygen separator (10), comprising at least one oxygen separation device (12, 14) comprising an oxygen separation sorbent (16, 18) for separating oxygen from an oxygen comprising gas, wherein the oxygen separation device (12, 14) comprises a gas inlet (24, 28) at a primary side being connected to an inlet conduct (20) for guiding a flow of oxygen comprising gas into the oxygen separation device (12, 14) and having a gas outlet (34, 36) at a secondary side being connected to an outlet conduct (30, 32) for guiding a flow of oxygen enriched gas out of the oxygen separation device (12, 14), wherein the secondary side of the oxygen separation device (12, 14) is further connected to a source of purging gas for guiding purging gas through the oxygen separation device (12, 14) and wherein the primary side of the oxygen separation device (12, 14) is connected to an exhaust conduct (70, 72) for guiding exhaust gas out of the oxygen separator (10), wherein the oxygen separator (10) further com
    Type: Application
    Filed: February 15, 2014
    Publication date: January 7, 2016
    Inventors: ACHIM GERHARD ROLF KOERBER, RAINER HILBIG, PAUL VAN DER SLUIS
  • Publication number: 20150367275
    Abstract: The present invention refers to an oxygen separation system (10), comprising a support (12) for accommodating a plurality of autonomous oxygen separation units (14), wherein the support (12) comprises a plurality of fastening positions having fastening means for receiving an oxygen separation unit (14); and a plurality of autonomous oxygen separation units (14) being attached to said support (12), each oxygen separation unit (14) comprising at least one oxygen separation device (28) with an oxygen separation sorbent (30) being capable of separating oxygen from an oxygen comprising gas by sorbing at least one component of the oxygen comprising gas apart from oxygen, and a gas conveying device (44) for guiding a flow of oxygen comprising gas through the oxygen separation device (28). Such an oxygen separation system (10) may have significant improvements against the systems of the prior art, particularly referring to space, weight, energy consumption, variability, flexibility and maintenance behavior.
    Type: Application
    Filed: January 26, 2014
    Publication date: December 24, 2015
    Inventors: RAINER HILBIG, JR., ACHIM GERHARD ROLF KOERBER, PAUL VAN DER SLUIS
  • Patent number: 9199847
    Abstract: The invention relates to a method of generating oxygen. The method comprises the steps of: intermittently guiding a stream of oxygen comprising gas through at least one adsorption chamber (12) being equipped with an oxygen separation adsorbent (16), thereby defining an adsorption mode and a desorption mode of the at least one adsorption chamber (12), and thereby enriching the oxygen comprising gas with respect to oxygen, guiding the enriched oxygen comprising gas to a primary side of a dense membrane (52), heating the dense membrane(52) to a temperature at which it is permeable for oxygen, generating an oxygen flow through the dense membrane (52) to its secondary side, thereby separating the oxygen from the enriched oxygen comprising gas and forming a stream of oxygen. According to the invention, the invention further comprises the step of guiding at least a part of the generated oxygen through the at least one adsorption chamber (12) being in desorption mode.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: December 1, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rainer Hilbig, Achim Gerhard Rolf Koerber, Mareike Klee, Wilco Cornelis Keur
  • Publication number: 20150238895
    Abstract: The present invention refers to an oxygen separation device (12, 14) for a pressure swing adsorption system. In order to provide at least one of improved maintenance behavior, longer lifetime and improved energy consumption, the oxygen separation device (12, 14) comprises a gas inlet (18, 22) at a primary side for guiding a flow of oxygen comprising gas into the oxygen separation device (12, 14) and a gas outlet (28, 30) at a secondary side for guiding a flow of oxygen enriched gas out of the oxygen separation device (12, 14), an oxygen separation membrane (78) comprising an oxygen separation sorbent being capable of separating oxygen from an oxygen comprising gas by sorbing at least one component of the oxygen comprising gas apart from oxygen, and a support structure (80) for supporting the oxygen separation membrane (78), wherein the support structure (80) comprises a plurality of support bars (82) being fixed to the oxygen separation membrane (78).
    Type: Application
    Filed: July 19, 2013
    Publication date: August 27, 2015
    Inventors: Mareike Klee, Rainer Hilbig, Robert William Murdoch, Achim Gerhard Rolf Koerber, Wilhelmus Cornelis Keur, Paul Van Der Sluis
  • Publication number: 20150128800
    Abstract: The invention relates to an oxygen separation device (12, 14), comprising a gas inlet (29, 31) at a primary side for guiding a flow of oxygen comprising gas into the oxygen separation device (12, 14) and having a gas outlet (33, 35) at a secondary side for guiding a flow of oxygen enriched gas out of the oxygen separation device (12, 14), at least one oxygen separation area (20, 22) with an oxygen separation sorbent (16, 18) being capable of separating oxygen from an oxygen comprising gas by sorbing at least one component of the oxygen comprising gas apart from oxygen and being contaminatable by a contaminant, and a decontamination area (21, 23) with a decontamination material(17, 19) for decontaminating the oxygen comprising gas from at least one contaminant, wherein the oxygen separation area (20, 22) and the decontamination area (21, 23) are fluidly connected by a spacer (76, 78) comprising at least one diffusion reducing channel (80, 82), wherein the spacer (76, 78) has a value of diffusion reduction rR o
    Type: Application
    Filed: May 8, 2013
    Publication date: May 14, 2015
    Applicant: Koninklijke Philips N.V.
    Inventors: Peter Lower Bliss, Rainer Hilbig, Joseph Thomas Dolensky, Achim Gerhard Rolf Koerber, Paul Van Der Sluis, Mareike Klee, Wilhelmus Cornelis Keur
  • Publication number: 20150128801
    Abstract: The invention relates to a method of separating oxygen from an oxygen comprising gas, the method comprising the steps of: performing at least a first and a second period of oxygen separation, the first and the second period of oxygen separation each comprising the steps of guiding an oxygen comprising gas to the primary side of an oxygen separation device (12, 14), the oxygen separation device (12, 14) comprising an oxygen separation sorbent (16, 18), and generating a flow of oxygen enriched gas out of the oxygen separation device (12, 14) by creating a pressure difference between the primary side and the secondary side of the oxygen separation device (12, 14), and performing a cooling period between the first and the second period of oxygen separation, wherein the cooling period comprises the steps of guiding a flushing sorbate through the oxygen separation device (12, 14), the flushing sorbate having an adsorption energy e1 with respect to the oxygen separation sorbent (16, 18), and guiding a cooling sorbat
    Type: Application
    Filed: April 22, 2013
    Publication date: May 14, 2015
    Inventors: Rainer Hilbig, Achim Gerhard Rolf Koerber, Paul Van Der Sluis, Mareike Klee, Wilhelmus Cornelis Keur
  • Patent number: 8999039
    Abstract: The invention relates to membranes, in particular oxygen separation membranes, which enable improved gas separation conditions with respect to cost, price, size, weight, and noise. The membrane, in particular oxygen separation membrane, according to the invention comprises a support layer (28) and a separation layer (30), wherein the separation layer (30) is permeable for oxygen and has a sorptive affinity for at least one other gas, in particular for nitrogen, wherein the membrane (20) is designed such that substantially only the separation layer (30) is heatable by a heating device.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: April 7, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Rainer Hilbig, Joachim Opitz
  • Publication number: 20150053544
    Abstract: The present invention relates to a method for generating nitric oxide, which comprises the steps of: providing a precursor solution comprising a nitric oxide precursor in a first reservoir (12), guiding the precursor solution through a reaction chamber (16), thereby subjecting the precursor solution to radiation to generate nitric oxide, guiding the generated nitric oxide out of the reaction chamber (16) by a stream of carrier gas, and guiding the reacted solution into a second reservoir (14). The method according to the invention provides a method of generating nitric oxide, or a flow of nitric oxide comprising gas, in which the concentration of the nitric oxide may be kept especially constant. Also claimed is an apparatus for generating nitric oxide comprising reservoirs for the precursor solution and the reacted solution and a reaction chamber.
    Type: Application
    Filed: November 28, 2011
    Publication date: February 26, 2015
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Claudia Hannelore Igney, Rainer Hilbig, Achim Gerhard Rolf Koerber
  • Publication number: 20150041099
    Abstract: The present invention relates to a heating device. In order to allow heating essentially without any latency period and with low costs, the heating device comprises: at least one container (12) having an inlet opening (14) and an outlet opening (16) and comprising an adsorbent agent (18) being provided between said inlet opening (14) and outlet opening (16) and being capable of adsorbing an adsorbate thereby releasing adsorption energy; and a gas conveying device (21) for conveying an adsorbate comprising gas through the interior of the container (12); wherein a gas conduit (22) is provided being connected to the outlet opening (16) of the container (12) for guiding the gas heated by adsorption energy inside the container (12) to a location to be heated with elevated temperature. The present invention further relates to a heating method.
    Type: Application
    Filed: March 20, 2013
    Publication date: February 12, 2015
    Inventors: Rainer Hilbig, Achim Gerhard Rolf Koerber, Paul Van Der Sluis, Mareike Klee, Wilhelmus Cornelis Keur