Patents by Inventor Rainer Knippelmeyer

Rainer Knippelmeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170287674
    Abstract: A particle-optical arrangement comprises a charged-particle source for generating a beam of charged particles; a multi-aperture plate arranged in a beam path of the beam of charged particles, wherein the multi-aperture plate has a plurality of apertures formed therein in a predetermined first array pattern, wherein a plurality of charged-particle beamlets is formed from the beam of charged particles downstream of the multi-aperture plate, and wherein a plurality of beam spots is formed in an image plane of the apparatus by the plurality of beamlets, the plurality of beam spots being arranged in a second array pattern; and a particle-optical element for manipulating the beam of charged particles and/or the plurality of beamlets; wherein the first array pattern has a first pattern regularity in a first direction, and the second array pattern has a second pattern regularity in a second direction electron-optically corresponding to the first direction, and wherein the second regularity is higher than the first re
    Type: Application
    Filed: May 30, 2017
    Publication date: October 5, 2017
    Inventors: Rainer KNIPPELMEYER, Oliver KIENZLE, Thomas KEMEN, Heiko MUELLER, Stephan UHLEMANN, Maximilian HAIDER, Antonio CASARES, Steven ROGERS
  • Publication number: 20170229279
    Abstract: Multi-beam e-beam columns and inspection systems that use such multi-beam e-beam columns are disclosed. A multi-beam e-beam column configured in accordance with the present disclosure may include an electron source and a multi-lens array configured to produce a plurality of beamlets utilizing electrons provided by the electron source. The multi-lens array may be further configured to shift a focus of at least one particular beamlet of the plurality of beamlets such that the focus of the at least one particular beamlet is different from a focus of at least one other beamlet of the plurality of beamlets.
    Type: Application
    Filed: June 3, 2016
    Publication date: August 10, 2017
    Inventors: Alan Brodie, Rainer Knippelmeyer, Christopher Sears, John Rouse, Grace Hsiu-Ling Chen
  • Patent number: 9673024
    Abstract: A particle-optical arrangement comprises a charged-particle source for generating a beam of charged particles; a multi-aperture plate arranged in a beam path of the beam of charged particles, wherein the multi-aperture plate has a plurality of apertures formed therein in a predetermined first array pattern, wherein a plurality of charged-particle beamlets is formed from the beam of charged particles downstream of the multi-aperture plate, and wherein a plurality of beam spots is formed in an image plane of the apparatus by the plurality of beamlets, the plurality of beam spots being arranged in a second array pattern; and a particle-optical element for manipulating the beam of charged particles and/or the plurality of beamlets; wherein the first array pattern has a first pattern regularity in a first direction, and the second array pattern has a second pattern regularity in a second direction electron-optically corresponding to the first direction, and wherein the second regularity is higher than the first re
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: June 6, 2017
    Assignees: Applied Materials Israel, Ltd., Carl Zeiss Microscopy GmbH
    Inventors: Rainer Knippelmeyer, Oliver Kienzle, Thomas Kemen, Heiko Mueller, Stephan Uhlemann, Maximilian Haider, Antonio Casares, Steven Rogers
  • Publication number: 20170084424
    Abstract: A scanning electron microscopy system is disclosed. The system includes a multi-beam scanning electron microscopy (SEM) sub-system. The SEM sub-system includes a multi-beam electron source configured to form a plurality of electron beams, a sample stage configured to secure a sample, an electron-optical assembly to direct the electron beams onto a portion of the sample, and a detector assembly configured to simultaneously acquire multiple images of the surface of the sample. The system includes a controller configured to receive the images from the detector assembly, identify a best focus image of images by analyzing one or more image quality parameters of the images, and direct the multi-lens array to adjust a focus of one or more electron beams based on a focus of an electron beam corresponding with the identified best focus image.
    Type: Application
    Filed: September 21, 2016
    Publication date: March 23, 2017
    Inventors: Doug K. Masnaghetti, Richard R. Simmons, Scott A. Young, Mark A. McCord, Rainer Knippelmeyer
  • Publication number: 20170084423
    Abstract: A scanning electron microscopy system is disclosed. The system includes a multi-beam scanning electron microscopy (SEM) sub-system. The SEM sub-system includes a multi-beam electron beam source configured to generate a plurality of electron beams, a sample stage configured to secure a sample, an electron-optical assembly, and a detector assembly configured to detect a plurality of electron signal beams emanating from the surface of the sample to form a plurality of images, each image associated with an electron beam of the plurality of electron beams. The system includes a controller configured to receive the images from the detector assembly, compare two or more of the images to identify common noise components present in the two or more images, and remove the identified common noise components from one or more images of the plurality of images.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 23, 2017
    Inventors: Doug K. Masnaghetti, Richard R. Simmons, Mark A. McCord, Rainer Knippelmeyer
  • Publication number: 20170084421
    Abstract: Multi-beam scanning electron microscope inspection systems are disclosed. A multi-beam scanning electron microscope inspection system may include an electron source and a beamlet control mechanism. The beamlet control mechanism may be configured to produce a plurality of beamlets utilizing electrons provided by the electron source and deliver one of the plurality of beamlets toward a target at a time instance. The multi-beam scanning electron microscope inspection system may also include a detector configured to produce an image of the target at least partially based on electrons backscattered out of the target.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 23, 2017
    Inventors: Mark A. McCord, Richard R. Simmons, Doug K. Masnaghetti, Rainer Knippelmeyer
  • Publication number: 20170084422
    Abstract: Multi-beam scanning electron microscope (SEM) inspection systems with dark field imaging capabilities are disclosed. An SEM inspection system may include an electron source and at least one optical device. The at least one optical device may be configured to produce a plurality of primary beamlets utilizing electrons provided by the electron source and deliver the plurality of primary beamlets toward a target. The apparatus may also include an array of detectors configured to receive a plurality of image beamlets emitted by the target in response to the plurality of primary beamlets and produce at least one dark field image of the target.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 23, 2017
    Inventors: Doug K. Masnaghetti, Mark A. McCord, Richard R. Simmons, Rainer Knippelmeyer
  • Publication number: 20160372304
    Abstract: A scanning electron microscopy system with improved image beam stability is disclosed. The system includes an electron beam source configured to generate an electron beam and a set of electron-optical elements to direct at least a portion of the electron beam onto a portion of the sample. The system includes an emittance analyzer assembly. The system includes a splitter element configured to direct at least a portion secondary electrons and/or backscattered electrons emitted by a surface of the sample to the emittance analyzer assembly. The emittance analyzer assembly is configured to image at least one of the secondary electrons and/or the backscattered electrons.
    Type: Application
    Filed: March 24, 2016
    Publication date: December 22, 2016
    Inventors: Doug K. Masnaghetti, Gabor Toth, David Trease, Rohit Bothra, Grace Hsiu-Ling Chen, Rainer Knippelmeyer
  • Publication number: 20160247663
    Abstract: A method of operating a charged particle beam system, the method comprises extracting a particle beam from a source; performing a first accelerating of the particles of the beam; forming a plurality of particle beamlets from the beam after the performing of the first accelerating; performing a second accelerating of the particles of the beamlets; performing a first decelerating of the particles of the beamlets after the performing of the second accelerating; deflecting the beamlets in a direction oriented transverse to a direction of propagation of the particles of the beamlets after the performing of the first decelerating; performing a second decelerating of the particles of the beamlets after the deflecting of the beamlets; and allowing the particles of the beamlets to be incident on an object surface after the performing of the second decelerating.
    Type: Application
    Filed: September 30, 2014
    Publication date: August 25, 2016
    Applicants: CARL ZEISS MICROSCOPY GMBH, APPLIED MATERIALS ISRAEL LTD.
    Inventors: Stefan SCHUBERT, Thomas KEMEN, Rainer KNIPPELMEYER
  • Publication number: 20160240344
    Abstract: The present invention relates to a charged particle system comprising: a charged particle source; a first multi aperture plate; a second multi aperture plate disposed downstream of the first multi aperture plate, the second multi aperture plate; a controller configured to selectively apply at least first and second voltage differences between the first and second multi aperture plates; wherein the charged particle source and the first and second multi aperture plates are arranged such that each of a plurality of charged particle beamlets traverses an aperture pair, said aperture pair comprising one aperture of the first multi aperture plate and one aperture of the second multi aperture plate, wherein plural aperture pairs are arranged such that a center of the aperture of the first multi aperture plate is, when seen in a direction of incidence of the charged particle beamlet traversing the aperture of the first multi aperture plate, displaced relative to a center of the aperture of the second multi aperture p
    Type: Application
    Filed: April 25, 2016
    Publication date: August 18, 2016
    Inventors: Thomas KEMEN, Rainer KNIPPELMEYER, Stefan SCHUBERT
  • Publication number: 20160181054
    Abstract: An objective lens arrangement includes a first, second and third pole pieces, each being substantially rotationally symmetric. The first, second and third pole pieces are disposed on a same side of an object plane. An end of the first pole piece is separated from an end of the second pole piece to form a first gap, and an end of the third pole piece is separated from an end of the second pole piece to form a second gap. A first excitation coil generates a focusing magnetic field in the first gap, and a second excitation coil generates a compensating magnetic field in the second gap. First and second power supplies supply current to the first and second excitation coils, respectively. A magnetic flux generated in the second pole piece is oriented in a same direction as a magnetic flux generated in the second pole piece.
    Type: Application
    Filed: February 29, 2016
    Publication date: June 23, 2016
    Inventors: Rainer KNIPPELMEYER, Stefan SCHUBERT
  • Patent number: 9336981
    Abstract: A charged particle detection system comprises plural detection elements and a multi-aperture plate in proximity of the detection elements. Charged particle beamlets can traverse the apertures of the multi-aperture plate to be incident on the detection elements. More than one multi-aperture plate can be provided to form a stack of multi-aperture plates in proximity of the detector. A suitable electric potential supplied to the multi-aperture plate can have an energy filtering property for the plural charged particle beamlets traversing the apertures of the plate.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: May 10, 2016
    Assignees: APPLIED MATERIALS ISRAEL LTD., CARL ZEISS MICROSCOPY GMBH
    Inventor: Rainer Knippelmeyer
  • Patent number: 9324537
    Abstract: The present invention relates to a charged particle system comprising: a charged particle source; a first multi aperture plate; a second multi aperture plate disposed downstream of the first multi aperture plate, the second multi aperture plate; a controller configured to selectively apply at least first and second voltage differences between the first and second multi aperture plates; wherein the charged particle source and the first and second multi aperture plates are arranged such that each of a plurality of charged particle beamlets traverses an aperture pair, said aperture pair comprising one aperture of the first multi aperture plate and one aperture of the second multi aperture plate, wherein plural aperture pairs are arranged such that a center of the aperture of the first multi aperture plate is, when seen in a direction of incidence of the charged particle beamlet traversing the aperture of the first multi aperture plate, displaced relative to a center of the aperture of the second multi aperture p
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: April 26, 2016
    Assignees: APPLIED MATERIALS ISRAEL, LTD., CARL ZEISS MICROSCOPY GMBH
    Inventors: Thomas Kemen, Rainer Knippelmeyer, Stefan Schubert
  • Publication number: 20160111251
    Abstract: A particle-optical arrangement comprises a charged-particle source for generating a beam of charged particles; a multi-aperture plate arranged in a beam path of the beam of charged particles, wherein the multi-aperture plate has a plurality of apertures formed therein in a predetermined first array pattern, wherein a plurality of charged-particle beamlets is formed from the beam of charged particles downstream of the multi-aperture plate, and wherein a plurality of beam spots is formed in an image plane of the apparatus by the plurality of beamlets, the plurality of beam spots being arranged in a second array pattern; and a particle-optical element for manipulating the beam of charged particles and/or the plurality of beamlets; wherein the first array pattern has a first pattern regularity in a first direction, and the second array pattern has a second pattern regularity in a second direction electron-optically corresponding to the first direction, and wherein the second regularity is higher than the first re
    Type: Application
    Filed: December 18, 2015
    Publication date: April 21, 2016
    Inventors: Rainer KNIPPELMEYER, Oliver KIENZLE, Thomas KEMEN, Heiko MUELLER, Stephan UHLEMANN, Maximilian HAIDER, Antonio CASARES, Steven ROGERS
  • Patent number: 9263233
    Abstract: A charged particle multi-beam inspection system comprises a beam generator directing a plurality of primary charged particle beams onto an object to produce an array of beam spots; an array of a first number of detection elements generating detection signals upon incidence of electrons; imaging optics imaging the array of beam spots onto the array of detection elements; wherein the beam generator includes a multi-aperture plate having an array of a second number of apertures greater than the first number; wherein the beam generator includes a selector having plural different states, wherein, in each of the plural different states, the apertures of a different group of apertures are each traversed by one primary charged particle beam, wherein a number of the apertures of the different group of apertures is equal to the first number.
    Type: Grant
    Filed: September 28, 2014
    Date of Patent: February 16, 2016
    Assignees: CARL ZEISS MICROSCOPY GMBH, APPLIED MATERIALS ISRAEL, LTD.
    Inventors: Dirk Zeidler, Rainer Knippelmeyer, Thomas Kemen, Mario Muetzel, Stefan Schubert, Nissim Elmaliah, Steven Rogers
  • Patent number: 9224576
    Abstract: A particle-optical arrangement comprises a charged-particle source for generating a beam of charged particles; a multi-aperture plate arranged in a beam path of the beam of charged particles, wherein the multi-aperture plate has a plurality of apertures formed therein in a predetermined first array pattern, wherein a plurality of charged-particle beamlets is formed from the beam of charged particles downstream of the multi-aperture plate, and wherein a plurality of beam spots is formed in an image plane of the apparatus by the plurality of beamlets, the plurality of beam spots being arranged in a second array pattern; and a particle-optical element for manipulating the beam of charged particles and/or the plurality of beamlets; wherein the first array pattern has a first pattern regularity in a first direction, and the second array pattern has a second pattern regularity in a second direction electron-optically corresponding to the first direction, and wherein the second regularity is higher than the first re
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: December 29, 2015
    Assignees: CARL ZEISS MICROSCOPY GMBH, APPLIED MATERIALS ISRAEL, LTD.
    Inventors: Rainer Knippelmeyer, Oliver Kienzle, Thomas Kemen, Heiko Mueller, Stephan Uhlemann, Maximilian Haider, Antonio Casares, Steven Rogers
  • Publication number: 20150090879
    Abstract: A charged particle multi-beam inspection system comprises a beam generator directing a plurality of primary charged particle beams onto an object to produce an array of beam spots; an array of a first number of detection elements generating detection signals upon incidence of electrons; imaging optics imaging the array of beam spots onto the array of detection elements; wherein the beam generator includes a multi-aperture plate having an array of a second number of apertures greater than the first number; wherein the beam generator includes a selector having plural different states, wherein, in each of the plural different states, the apertures of a different group of apertures are each traversed by one primary charged particle beam, wherein a number of the apertures of the different group of apertures is equal to the first number.
    Type: Application
    Filed: September 28, 2014
    Publication date: April 2, 2015
    Inventors: Dirk Zeidler, Rainer Knippelmeyer, Thomas Kemen, Mario Muetzel, Stefan Schubert, Nissim Elmaliah, Steven Rogers
  • Publication number: 20150008331
    Abstract: The present invention relates to a charged particle system comprising: a charged particle source; a first multi aperture plate; a second multi aperture plate disposed downstream of the first multi aperture plate, the second multi aperture plate; a controller configured to selectively apply at least first and second voltage differences between the first and second multi aperture plates; wherein the charged particle source and the first and second multi aperture plates are arranged such that each of a plurality of charged particle beamlets traverses an aperture pair, said aperture pair comprising one aperture of the first multi aperture plate and one aperture of the second multi aperture plate, wherein plural aperture pairs are arranged such that a center of the aperture of the first multi aperture plate is, when seen in a direction of incidence of the charged particle beamlet traversing the aperture of the first multi aperture plate, displaced relative to a center of the aperture of the second multi aperture p
    Type: Application
    Filed: June 19, 2014
    Publication date: January 8, 2015
    Inventors: Thomas KEMEN, Rainer KNIPPELMEYER, Stefan SCHUBERT
  • Patent number: 8907277
    Abstract: Methods disclosed herein include: (a) forming a channel in a sample, the channel extending one micron or more along a direction oriented at an angle to a surface of the sample; (b) exposing a portion of the sample above the channel to a particle beam to cause particles to leave the surface of the sample; and (c) forming an image of the sample based on particles that leave the surface.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: December 9, 2014
    Assignee: Carl Zeiss Microscopy, LLC
    Inventors: Rainer Knippelmeyer, Nicholas Economou, Mohan Ananth, Lewis A. Stern, Bill DiNatale, Lawrence Scipioni, John A. Notte, IV
  • Publication number: 20140158902
    Abstract: A particle-optical arrangement comprises a charged-particle source for generating a beam of charged particles; a multi-aperture plate arranged in a beam path of the beam of charged particles, wherein the multi-aperture plate has a plurality of apertures formed therein in a predetermined first array pattern, wherein a plurality of charged-particle beamlets is formed from the beam of charged particles downstream of the multi-aperture plate, and wherein a plurality of beam spots is formed in an image plane of the apparatus by the plurality of beamlets, the plurality of beam spots being arranged in a second array pattern; and a particle-optical element for manipulating the beam of charged particles and/or the plurality of beamlets; wherein the first array pattern has a first pattern regularity in a first direction, and the second array pattern has a second pattern regularity in a second direction electron-optically corresponding to the first direction, and wherein the second regularity is higher than the first re
    Type: Application
    Filed: January 27, 2014
    Publication date: June 12, 2014
    Applicants: Applied Materials Israel, Ltd., Carl Zeiss Microscopy GmbH
    Inventors: Rainer Knippelmeyer, Oliver Kienzle, Thomas Kemen, Heiko Mueller, Stephan Uhlemann, Maximilian Haider, Antonio Casares, Steven Rogers