Patents by Inventor Raita WADA

Raita WADA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11635120
    Abstract: A sintered friction material for brake having a high friction coefficient, with which reduction of the friction coefficient is prevented at high temperature and stable brake performance is maintained. It comprises: a metal matrix of Ni or Ni+Fe (small amount); a solid lubricant (a); and a friction adjusting material (b) including: metal or alloy particles (b1) having an average particle size of 50 ?m or more and containing at least one selected from W, Mo, Cr, and FeW; and inorganic particles (b2) containing at least one selected from oxides, nitrides, carbides, and intermetallic compounds. An average particle size db1 of b1 and an average particle size db2 of b2 satisfy db1<db2. Dispersing, in the metal matrix, b1 and b2 satisfying particular conditions as the friction adjusting material can produce a geometrical structure (particle structure with a high filling density) suitable for preventing plastic deformation of the sintered friction material.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: April 25, 2023
    Assignee: Sunstar Engineering Inc.
    Inventors: Hoshiaki Terao, Raita Wada, Tsuyoshi Nakatsuji, Yoshinori Shinagawa
  • Publication number: 20220299278
    Abstract: Provided is a heat sink having a clad structure of Co—Mo composite materials and Cu materials, satisfying high heat-sink properties required of the heat sink for use in a semiconductor package with a frame on which a high-output and small-sized semiconductor is mounted, and preventing, when applied to the semiconductor package with a frame, crack of the frame due to local stress concentration. The heat sink has three or more Cu layers and two or more Cu—Mo composite layers alternately stacked in a thickness direction so that the Cu layers are outermost layers on both sides thereof, the Cu layers as the outermost layers each having a thickness t1 of 40 ?m or more, the heat sink satisfying 0.06?t1/T?0.27 (where T: heat sink thickness) and t2/T?0.36/[(total number of layers?1)/2] (where t2: Cu—Mo composite layer thickness, the total number of layers: sum of numbers of Cu layers and Cu—Mo composite layers).
    Type: Application
    Filed: August 28, 2020
    Publication date: September 22, 2022
    Applicants: JFE PRECISION CORPORATION, JFE STEEL CORPORATION
    Inventors: Hoshiaki TERAO, Kouichi HASHIMOTO, Raita WADA
  • Publication number: 20210031268
    Abstract: Provided is a method of manufacturing a soft magnetic dust core. The method includes: preparing coated powder including amorphous powder made of an Fe-B-Si-P-C-Cu-based alloy, an Fe-B-P-C-Cu-based alloy, an Fe-B-Si-P-Cu-based alloy, or an Fe-B-P-Cu-based alloy, with a first initial crystallization temperature Tx1 and a second initial crystallization temperature Tx2; and a coating formed on a surface of particles of the amorphous powder; applying a compacting pressure to the coated powder or a mixture of the coated powder and the amorphous powder at a temperature equal to or lower than Tx1?100 K; and heating to a maximum end-point temperature equal to or higher than Tx1?50 K and lower than Tx2 with the compacting pressure being applied.
    Type: Application
    Filed: October 21, 2020
    Publication date: February 4, 2021
    Applicants: JFE STEEL CORPORATION, JFE PRECISION CORPORATION, TOKIN CORPORATION, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Naomichi NAKAMURA, Makoto NAKASEKO, Takuya TAKASHITA, Mineo MURAKI, Hoshiaki TERAO, Raita WADA, Akiri URATA, Yu KANAMORI, Makoto YAMAKI, Koichi OKAMOTO, Toshinori TSUDA, Shoichi SATO, Kimihiro OZAKI
  • Publication number: 20200263750
    Abstract: A sintered friction material for brake having a high friction coefficient, with which reduction of the friction coefficient is prevented at high temperature and stable brake performance is maintained. It comprises: a metal matrix of Ni or Ni+Fe (small amount); a solid lubricant (a); and a friction adjusting material (b) including: metal or alloy particles (b1) having an average particle size of 50 ?m or more and containing at least one selected from W, Mo, Cr, and FeW; and inorganic particles (b2) containing at least one selected from oxides, nitrides, carbides, and intermetallic compounds. An average particle size db1 of b1 and an average particle size db2 of b2 satisfy db1<db2. Dispersing, in the metal matrix, b1 and b2 satisfying particular conditions as the friction adjusting material can produce a geometrical structure (particle structure with a high filling density) suitable for preventing plastic deformation of the sintered friction material.
    Type: Application
    Filed: March 14, 2018
    Publication date: August 20, 2020
    Applicants: JFE PRECISION CORPORATION, Sunstar Engineering Inc.
    Inventors: Hoshiaki TERAO, Raita WADA, Tsuyoshi NAKATSUJI, Yoshinori SHINAGAWA
  • Publication number: 20180361474
    Abstract: Provided is a soft magnetic dust core having high density and favorable properties. A method of manufacturing a soft magnetic dust core includes: preparing coated powder including amorphous powder made of an Fe—B—Si—P—C—Cu-based alloy, an Fe—B—P—C—Cu-based alloy, an Fe—B—Si—P—Cu-based alloy, or an Fe—B—P—Cu-based alloy, with a first initial crystallization temperature Tx1 and a second initial crystallization temperature Tx2; and a coating formed on a surface of particles of the amorphous powder; applying a compacting pressure to the coated powder or a mixture of the coated powder and the amorphous powder at a temperature equal to or lower than Tx1?100 K; and heating to a maximum end-point temperature equal to or higher than Tx1?50 K and lower than Tx2 with the compacting pressure being applied.
    Type: Application
    Filed: July 28, 2016
    Publication date: December 20, 2018
    Applicants: JFE STEEL CORPORATION, JFE PRECISION CORPORATION, TOKIN CORPORATION, National Institute of Advanced Industrial Science and Technology
    Inventors: Naomichi NAKAMURA, Makoto NAKASEKO, Takuya TAKASHITA, Mineo MURAKI, Hoshiaki TERAO, Raita WADA, Akiri URATA, Yu KANAMORI, Makoto YAMAKI, Koichi OKAMOTO, Toshinori TSUDA, Shoichi SATO, Kimihiro OZAKI
  • Publication number: 20180169759
    Abstract: Provided is a soft magnetic dust core having high density and favorable properties. A method of manufacturing a soft magnetic dust core includes: preparing coated powder including amorphous powder made of an Fe—B—Si—P—C—Cu-based alloy, an Fe—B—P—C—Cu-based alloy, an Fe—B—Si—P—Cu-based alloy, or an Fe—B—P—Cu-based alloy, with a first initial crystallization temperature Tx1 and a second initial crystallization temperature Tx2; and a coating formed on a surface of particles of the amorphous powder; applying a compacting pressure to the coated powder or a mixture of the coated powder and the amorphous powder at a temperature equal to or lower than Tx1?100 K; and heating to a maximum end-point temperature equal to or higher than Tx1?50 K and lower than Tx2 with the compacting pressure being applied.
    Type: Application
    Filed: July 28, 2016
    Publication date: June 21, 2018
    Applicants: JFE STEEL CORPORATION, JFE PRECISION CORPORATION, TOKIN CORPORATION, National Institute of Advanced Industrial Science and Technology
    Inventors: Naomichi NAKAMURA, Makoto NAKASEKO, Takuya TAKASHITA, Mineo MURAKI, Hoshiaki TERAO, Raita WADA, Akiri URATA, Yu KANAMORI, Makoto YAMAKI, Koichi OKAMOTO, Toshinori TSUDA, Shoichi SATO, Kimihiro OZAKI