Patents by Inventor Raito Kawamura

Raito Kawamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140286807
    Abstract: A vane compressor includes a cylinder, a rotor portion, vanes, and a first discharge port allowing a refrigerant in a compression chamber to be discharged therethrough. The vanes are disposed inside the rotor portion and held rotatably about the center of a cylinder inner circumferential surface, partition a space between the cylinder inner circumferential surface and the rotor portion, and form the compression chamber. A second discharge port is disposed at a location having a phase angle smaller than that at the first discharge port, being open to the cylinder inner circumferential surface, and communicating with the compression chamber. The second discharge port includes an opening portion to the compression chamber, the opening portion having a width in the circumferential direction, the width being equal to or smaller than the width of the tip of each of the vanes.
    Type: Application
    Filed: December 12, 2012
    Publication date: September 25, 2014
    Applicant: Mitsubishi Electric Corporaton
    Inventors: Shin Sekiya, Raito Kawamura, Hideaki Maeyama, Shinichi Takahashi, Tatsuya Sasaki, Kanichiro Sugiura
  • Publication number: 20140271315
    Abstract: To allow a bush to stably rotate about a bush center, an end of a vane portion that is close to an inner circumferential surface center is always positioned on the inner side with respect to the bush center. Thereby, in a vane compressor a vane is stably supported, wear at a tip of the vane is suppressed, loss due to sliding on bearings is reduced by supporting a rotating shaft portion with a small diameter, and accuracy in outside diameter and center of rotation of a rotor portion is increased.
    Type: Application
    Filed: January 11, 2012
    Publication date: September 18, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shin Sekiya, Raito Kawamura, Hideaki Maeyama, Shinichi Takahashi, Tatsuya Sasaki, Kanichiro Sugiura
  • Publication number: 20140271303
    Abstract: A vane-type compressor includes a rotor shaft that includes rotating shaft portions and a rotor portion, which are integrated with one another. A lower end of the rotating shaft is disposed in an oil reservoir. The vane-type compressor also includes vane aligners disposed at both end portions of vanes, and recess portions, which are respectively formed in a frame and a cylinder head so as to be concentric with an inner circumferential surface of a cylinder. Outer circumferential surfaces of the vane aligners are slidably supported by the recess portions. In the rotor shaft, oil supply channels, which allow communication between the oil reservoir and the recess portions of the frame and the cylinder head, and an oil pump, which supplies refrigerating machine oil in the oil reservoir to the oil supply channels, are provided.
    Type: Application
    Filed: January 11, 2012
    Publication date: September 18, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shin Sekiya, Raito Kawamura, Hideaki Maeyama, Shinichi Takahashi, Tatsuya Sasaki, Kanichiro Sugiura
  • Patent number: 8821143
    Abstract: In a vane rotary compressor, a discharge valve on a discharge flow channel communicates an operating chamber in a compression element with a discharge hole. The discharge valve is pushed from an opening portion of a discharge valve groove to an outer circumferential surface of a roller by a high-pressure refrigerant when pressure in an operating chamber is lower than the pressure of the high-pressure refrigerant. The discharge valve is pushed back into the discharge valve groove by the refrigerant pressure in the operating chamber when the pressure in the operating chamber is higher than the pressure of the high-pressure refrigerant. The discharge flow channel is closed by the outer circumferential surface of the discharge valve pushed out from the opening portion of the discharge valve groove and the outer circumferential surface of the roller, and opens when the discharge valve is pushed back into the discharge valve groove.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 2, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinichi Takahashi, Hideaki Maeyama, Shin Sekiya, Tatsuya Sasaki, Raito Kawamura, Kanichirou Sugiura
  • Patent number: 8790097
    Abstract: A refrigerant compressor that enhances compressor efficiency by both reducing an amplitude of pressure pulsations and reducing pressure losses in a discharge muffler space into which is discharged a refrigerant compressed at a compression unit. A low-stage discharge muffler space is formed in the shape of a ring around a drive shaft. In the low-stage discharge muffler space, a discharge port rear guide is provided in the proximity of a discharge port through which is discharged the refrigerant compressed by a low-stage compression unit. The discharge port rear guide is provided at a flow path in one direction out of two flow paths from the discharge port to a communication port in different directions around the drive shaft, and prevents the refrigerant from flowing in that direction, thereby causing the refrigerant to circulate in a forward direction in the ring-shaped discharge muffler space.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: July 29, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuhide Yokoyama, Toshihide Koda, Shin Sekiya, Kei Sasaki, Raito Kawamura, Taro Kato, Atsuyoshi Fukaya, Takeshi Fushiki, Hideaki Maeyama, Masao Tani
  • Publication number: 20130084202
    Abstract: In a vane rotary compressor, a discharge valve on a discharge flow channel communicates an operating chamber in a compression element with a discharge hole. The discharge valve is pushed from an opening portion of a discharge valve groove to an outer circumferential surface of a roller by a high-pressure refrigerant when pressure in an operating chamber is lower than the pressure of the high-pressure refrigerant. The discharge valve is pushed back into the discharge valve groove by the refrigerant pressure in the operating chamber when the pressure in the operating chamber is higher than the pressure of the high-pressure refrigerant. The discharge flow channel is closed by the outer circumferential surface of the discharge valve pushed out from the opening portion of the discharge valve groove and the outer circumferential surface of the roller, and opens when the discharge valve is pushed back into the discharge valve groove.
    Type: Application
    Filed: August 23, 2012
    Publication date: April 4, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shinichi Takahashi, Hideaki Maeyama, Shin Sekiya, Tatsuya Sasaki, Raito Kawamura, Kanichirou Sugiura
  • Publication number: 20120085119
    Abstract: A device that enhances compressor efficiency by reducing pressure losses in a discharge muffler space into which is discharged a refrigerant compressed by a compression unit. A low-stage discharge muffler space is formed in the shape of a ring around a drive shaft. In the low-stage discharge muffler space, a communication port flow guide is provided so as to cover a predetermined area of an opening of a communication port from a side of a flow path in a reverse direction out of two flow paths in different directions around the drive shaft from a discharge port through which is discharged the refrigerant compressed by a low-stage compression unit to the communication port through which the refrigerant flows out. The communication port flow guide transforms a direction of a flow into a direction of a connecting flow path.
    Type: Application
    Filed: May 24, 2010
    Publication date: April 12, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tetsuhide Yokoyama, Raito Kawamura, Kei Sasaki, Shin Sekiya, Taro Kato, Masao Tani, Atsuyoshi Fukaya, Takeshi Fushiki
  • Publication number: 20120085118
    Abstract: A refrigerant compressor that enhances compressor efficiency by both reducing an amplitude of pressure pulsations and reducing pressure losses in a discharge muffler space into which is discharged a refrigerant compressed at a compression unit. A low-stage discharge muffler space is formed in the shape of a ring around a drive shaft. In the low-stage discharge muffler space, a discharge port rear guide is provided in the proximity of a discharge port through which is discharged the refrigerant compressed by a low-stage compression unit. The discharge port rear guide is provided at a flow path in one direction out of two flow paths from the discharge port to a communication port in different directions around the drive shaft, and prevents the refrigerant from flowing in that direction, thereby causing the refrigerant to circulate in a forward direction in the ring-shaped discharge muffler space.
    Type: Application
    Filed: May 24, 2010
    Publication date: April 12, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Tetsuhide Yokoyama, Toshihide Koda, Shin Sekiya, Kei Sasaki, Raito Kawamura, Taro Kato, Atsuyoshi Fukaya, Takeshi Fushiki, Hideaki Maeyama, Masao Tani