Patents by Inventor Raj K. Shori

Raj K. Shori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9557415
    Abstract: One embodiment describes an imaging system. The system includes a first imaging system configured to provide first signals to a target area and to receive first response signals. The system also includes a second imaging system configured to provide second signals to the target area and to receive second response signals. The first and second signals can have separate frequency bands. The system further includes a processor configured to correct the first response signals based on the second response signals, and to generate an image based on the corrected first response signals.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: January 31, 2017
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Mostafa A. Karam, Raj K. Shori, Douglas Lee Sego, Lyle K. Bidler, II, A. Douglas Meyer
  • Patent number: 9330330
    Abstract: A detection system includes a polarization analyzer that generates one or more null detection values if an object is sensed in a received millimeter wave (MMW) brightness temperature data set. The polarization analyzer analyzes a polarization parameter in the received MMW brightness temperature data set to generate the one or more null detection values. An object detector detects if the object is present based on a comparison of the one or more null detection values to a predetermined threshold. A singular value decomposition (SVD) unit is enabled by the object detector to decompose the MMW brightness temperature data set into a plurality of image layers. Each image layer includes at least one feature of a scene. An identification unit analyzes the plurality of image layers from the SVD unit to determine a shape or a location of the object from the scene.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: May 3, 2016
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Mostafa A. Karam, Kent Anderson, Raj K. Shori, A. Douglas Meyer
  • Publication number: 20150276927
    Abstract: One embodiment describes an imaging system. The system includes a first imaging system configured to provide first signals to a target area and to receive first response signals. The system also includes a second imaging system configured to provide second signals to the target area and to receive second response signals. The first and second signals can have separate frequency bands. The system further includes a processor configured to correct the first response signals based on the second response signals, and to generate an image based on the corrected first response signals.
    Type: Application
    Filed: January 20, 2014
    Publication date: October 1, 2015
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Mostafa A. Karam, Raj K. Shori, Douglas Lee Sego, Lyle K. Bidler, II, A. Douglas Meyer
  • Patent number: 9086483
    Abstract: One embodiment of the invention includes a material detection system. The system includes a sensor system configured to collect radiation from a region of interest. The collected radiation can include a plurality of frequency bands. The system also includes a processing unit configured to detect a material of interest. The material of interest can be a concealed dielectric material, and the processing unit can be configured to decompose the collected radiation into natural resonance signals to analyze the natural resonance signals to detect an anomaly corresponding to the concealed dielectric material based on wave characteristics of the natural resonance signals. The processing unit could also include processing layers associated with the plurality of frequency bands for detecting and identifying the material of interest based on wave characteristics associated with each of the plurality of frequency bands of the collected radiation.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: July 21, 2015
    Assignee: NORTHROP GRUMMAN GUIDANCE AND ELECTRONICS COMPANY, INC.
    Inventors: Mostafa A. Karam, A. Douglas Meyer, Charles H. Volk, Raj K. Shori, Hector Macias
  • Publication number: 20150198703
    Abstract: A detection system includes a polarization analyzer that generates one or more null detection values if an object is sensed in a received millimeter wave (MMW) brightness temperature data set. The polarization analyzer analyzes a polarization parameter in the received MMW brightness temperature data set to generate the one or more null detection values. An object detector detects if the object is present based on a comparison of the one or more null detection values to a predetermined threshold. A singular value decomposition (SVD) unit is enabled by the object detector to decompose the MMW brightness temperature data set into a plurality of image layers. Each image layer includes at least one feature of a scene. An identification unit analyzes the plurality of image layers from the SVD unit to determine a shape or a location of the object from the scene.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 16, 2015
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: MOSTAFA A. KARAM, KENT ANDERSON, RAJ K. SHORI, A. DOUGLAS MEYER
  • Publication number: 20120248313
    Abstract: One embodiment of the invention includes a material detection system. The system includes a sensor system configured to collect radiation from a region of interest. The collected radiation can include a plurality of frequency bands. The system also includes a processing unit configured to detect a material of interest. The material of interest can be a concealed dielectric material, and the processing unit can be configured to decompose the collected radiation into natural resonance signals to analyze the natural resonance signals to detect an anomaly corresponding to the concealed dielectric material based on wave characteristics of the natural resonance signals. The processing unit could also include processing layers associated with the plurality of frequency bands for detecting and identifying the material of interest based on wave characteristics associated with each of the plurality of frequency bands of the collected radiation.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Inventors: MOSTAFA A. KARAM, A. Douglas Meyer, Charles H. Volk, Raj K. Shori, Hector Macias
  • Patent number: 7554076
    Abstract: An optical sensor system and method includes a plurality of optical transceiver modules arranged across the surface of the optical sensor in a predetermined pattern. A given optical transceiver module includes an optical transmitter that produces at least one light beam and an optical receiver that detects reflected light from the at least one light beam. The optical transceiver module further includes housing for housing the optical transmitter and the optical receiver.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: June 30, 2009
    Assignee: Northrop Grumman Corporation
    Inventors: Yaujen Wang, Brendan J. D. Irwin, Raj K. Shori
  • Publication number: 20070295891
    Abstract: An optical sensor system and method includes a plurality of optical transceiver modules arranged across the surface of the optical sensor in a predetermined pattern. A given optical transceiver module includes an optical transmitter that produces at least one light beam and an optical receiver that detects reflected light from the at least one light beam. The optical transceiver module further includes housing for housing the optical transmitter and the optical receiver.
    Type: Application
    Filed: June 21, 2006
    Publication date: December 27, 2007
    Inventors: Yaujen Wang, Brendan J.D. Irwin, Raj K. Shori