Patents by Inventor Rajan K. Chudgar

Rajan K. Chudgar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6977287
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with ?,?-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of ?,?-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations. Desirably, the melting point range of one of the crystalline populations is distinguishable from the melting point range of another crystalline population by a temperature range of from 1° C. to 8° C.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: December 20, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Christopher R. Davey, Chon-Yie Lin, Galen C. Richeson, Palanisamy Arjunan, Olivier Jean Georjon
  • Patent number: 6809168
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: October 26, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Olivier Jean Georjon, Chon-Yie Lin, Michael C. Chen, Galen C. Richeson, Palanisamy Arjunan
  • Patent number: 6784269
    Abstract: This invention relates to propylene homopolymer compositions obtained from metallocene catalysis wherein the polymer has a molecular weight distribution (Mw/Mn) in the range of from 4.0 to 20.0. The propylene homopolymer composition may be prepared in a multiple stage polymerization process using the same metallocene component in at least two stages. The composition may comprise isotactic homopolymer in one embodiment, and have a hexane extractables of less than 2 wt % in one embodiment. The composition is useful in making films.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: August 31, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chon Y. Lin, Michael C. Chen, Aspy K. Mehta, Rajan K. Chudgar
  • Publication number: 20040087749
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: April 2, 2003
    Publication date: May 6, 2004
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Armenag H. Dekmezian, Olivier Jean Georjon, Chon-Yie Lin, Michael C. Chen, Galen C. Richeson, Palanisamy Arjunan
  • Publication number: 20040087750
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further indude at least two crystalline populations.
    Type: Application
    Filed: June 24, 2003
    Publication date: May 6, 2004
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Christopher R. Davey, Chon-Yie Lin, Galen C. Richeson, Palanisamy Arjunan, Olivier Jean Georjon
  • Publication number: 20040044106
    Abstract: The present invention is a nucleated, metallocene catalyzed polypropylene homopolymer with an MFR less than 100 g/10 min, or desirably less than 21 g/10 min, the polypropylene useful in making casting cups and other such articles where a high degree of precision and accuracy in the casting is desirable, such as in contact lens casting cups.
    Type: Application
    Filed: May 20, 2003
    Publication date: March 4, 2004
    Inventors: Robert C. Portnoy, Rajan K. Chudgar
  • Publication number: 20030088022
    Abstract: This invention relates to propylene homopolymer compositions obtained from metallocene catalysis wherein the polymer has a molecular weight distribution (Mw/Mn) in the range of from 4.0 to 20.0. The propylene homopolymer composition may be prepared in a multiple stage polymerization process using the same metallocene component in at least two stages. The composition may comprise isotactic homopolymer in one embodiment, and have a hexane extractables of less than 2 wt % in one embodiment. The composition is useful in making films.
    Type: Application
    Filed: June 20, 2002
    Publication date: May 8, 2003
    Inventors: Chon Y. Lin, Michael C. Chen, Aspy K. Mehta, Rajan K. Chudgar
  • Patent number: 6476173
    Abstract: This invention relates to isotactic propylene homopolymer compositions obtained from metallocene catalysis wherein the polymer has a molecular weight distribution (Mw/Mn) in the range of from about 2.5 to about 20.0. The isototic propylene homopolymer composition may be prepared in a multiple stage polymerization process using the same metallocene component in at least two stages.
    Type: Grant
    Filed: November 7, 2000
    Date of Patent: November 5, 2002
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Chon-Yie Lin, Michael Chia-Chao Chen, Aspy Keki Mehta, Rajan K. Chudgar
  • Publication number: 20020013440
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: February 20, 2001
    Publication date: January 31, 2002
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Christopher R. Davey, Charlie Y. Lin, Michael C. Chen, Galen C. Richeson
  • Publication number: 20010053837
    Abstract: The copolymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature (without the use of externally added nucleating agents) in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: February 20, 2001
    Publication date: December 20, 2001
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Christopher R. Davey, Charlie Y. Lin, Michael C. Chen, Galen C. Richeson
  • Publication number: 20010007896
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;)-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: December 11, 2000
    Publication date: July 12, 2001
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy Keki Mehta, Armenag Hagop Dekmezian, Christopher Ross Davey, Charlie Y. Lin, Michael Chia-Chao Chen, Galen Charles Richeson, Rajan K. Chudgar, Main Chang
  • Patent number: 6207750
    Abstract: This invention relates to isotactic propylene homopolymer compositions obtained from metallocene catalysis wherein the polymer has a molecular weight distribution (Mw/Mn) in the range of from about 2.5 to about 20.0. The isotactic propylene homopolymer composition may be prepared in a multiple stage polymerization process using the same metallocene component in at least two stages.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: March 27, 2001
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: Chon-Yie Lin, Michael Chia-Chao Chen, Aspy Keki Mehta, Rajan K. Chudgar
  • Patent number: 6143686
    Abstract: This invention relates to supported metallocene catalyst compositions useful for addition reactions of prochiral .alpha.-olefins. Polymers, specifically propylene polymers, produced with this catalyst possess higher stereoregularities and consequently higher melting points compared to propylene polymers produced using previously known supported metallocene catalysts. The microstructure of the polymers obtained using the supported catalyst systems of this invention is similar to that obtained using analogous unsupported catalysts. The catalyst compositions comprise transition metal (i.e., metallocene) cations and beam comprising anionic activators in prescribed ratios on metal or metalloid oxide supports. The transition metal compound is represented by the formula: ##STR1## wherein M is selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten;R.sup.1 and R.sup.2 are identical or different, and are one of a hydrogen atom, a C.sub.1 -C.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: November 7, 2000
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: James C. Vizzini, Rajan K. Chudgar