Patents by Inventor Rajaram NARAYANAN

Rajaram NARAYANAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11862475
    Abstract: A semiconductor processing system includes a remote plasma source (RPS), a faceplate, and an output manifold positioned between the RPS and the faceplate. The output manifold is characterized by a plurality of purge outlets that are fluidly coupled with a purge gas source and a plurality of deposition outlets that are fluidly coupled with a deposition gas source. A delivery tube extends between and fluidly couples the RPS and the faceplate. The delivery tube is characterized by a generally cylindrical sidewall that defines an upper plurality of apertures that are arranged in a radial pattern. Each of the upper apertures is fluidly coupled with one of the purge outlets. The generally cylindrical sidewall defines a lower plurality of apertures that are arranged in a radial pattern and below the upper plurality of apertures. Each of the lower apertures is fluidly coupled with one of the deposition outlets.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Fang Ruan, Diwakar Kedlaya, Amit Bansal, Venkata Sharat Chandra Parimi, Rajaram Narayanan, Badri N. Ramamurthi, Sherry L. Mings, Job George Konnoth Joseph, Rupankar Choudhury
  • Patent number: 11810764
    Abstract: Exemplary semiconductor processing chambers may include a gasbox. The chambers may include a substrate support. The chambers may include a blocker plate positioned between the gasbox and the substrate support. The blocker plate may define a plurality of apertures through the plate. The chambers may include a faceplate positioned between the blocker plate and substrate support. The faceplate may be characterized by a first surface facing the blocker plate and a second surface opposite the first surface. The second surface of the faceplate and the substrate support may at least partially define a processing region within the semiconductor processing chamber. The faceplate may be characterized by a central axis, and the faceplate may define a plurality of apertures through the faceplate. The faceplate may define a plurality of recesses extending about and radially outward of the plurality of apertures.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: November 7, 2023
    Inventors: Fang Ruan, Prashant Kumar Kulshreshtha, Rajaram Narayanan, Diwakar Kedlaya
  • Patent number: 11798820
    Abstract: A system may include a main line for delivering a first gas, and a sensor for measuring a concentration of a precursor in the first gas delivered through the main line. The system may further include first and second sublines for providing fluid access to first and second processing chambers, respectively. The first subline may include a first flow controller for controlling the first gas flowed through the first subline. The second subline may include a second flow controller for controlling the first gas flowed through the second subline. A delivery controller may be configured to control the first and second flow controllers based on the measured concentration of the precursor to deliver a first mixture of the first gas and a second gas and a second mixture of the first and second gases into the first and second semiconductor processing chambers, respectively.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: October 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Diwakar Kedlaya, Fang Ruan, Zubin Huang, Ganesh Balasubramanian, Kaushik Alayavalli, Martin Seamons, Kwangduk Lee, Rajaram Narayanan, Karthik Janakiraman
  • Publication number: 20230335402
    Abstract: A method of processing a substrate is provided including flowing a deposition gas comprising a hydrocarbon compound and a dopant compound into a process volume having a substrate disposed positioned on a substrate support. The process volume is maintained at a pressure of about 0.5 mTorr to about 10 mTorr. The method includes generating a plasma at the substrate by applying a first RF bias to the substrate support to deposit a doped diamond-like carbon film on the substrate. The doped diamond-like carbon film includes about 5 at. % to about 25 at. % of dopant and a first stress property. The method includes annealing the doped diamond-like carbon film at about 220° C. to about 450° C. to form an annealed film. The annealed film includes a second stress property. The second stress property having an absolute value less than or within 10% the first stress property.
    Type: Application
    Filed: April 15, 2022
    Publication date: October 19, 2023
    Inventors: Eswaranand Venkatasubramanian, Rajaram Narayanan, Pramit Manna, Abhijit B. Mallick, Karthik Janakiraman, Jialiang Wang
  • Publication number: 20220122851
    Abstract: A semiconductor processing system includes a remote plasma source (RPS), a faceplate, and an output manifold positioned between the RPS and the faceplate. The output manifold is characterized by a plurality of purge outlets that are fluidly coupled with a purge gas source and a plurality of deposition outlets that are fluidly coupled with a deposition gas source. A delivery tube extends between and fluidly couples the RPS and the faceplate. The delivery tube is characterized by a generally cylindrical sidewall that defines an upper plurality of apertures that are arranged in a radial pattern. Each of the upper apertures is fluidly coupled with one of the purge outlets. The generally cylindrical sidewall defines a lower plurality of apertures that are arranged in a radial pattern and below the upper plurality of apertures. Each of the lower apertures is fluidly coupled with one of the deposition outlets.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 21, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Fang Ruan, Diwakar Kedlaya, Amit Bansal, Venkata Sharat Chandra Parimi, Rajaram Narayanan, Badri N. Ramamurthi, Sherry L. Mings, Job George Konnoth Joseph, Rupankar Choudhury
  • Publication number: 20210335574
    Abstract: Exemplary semiconductor processing chambers may include a gasbox. The chambers may include a substrate support. The chambers may include a blocker plate positioned between the gasbox and the substrate support. The blocker plate may define a plurality of apertures through the plate. The chambers may include a faceplate positioned between the blocker plate and substrate support. The faceplate may be characterized by a first surface facing the blocker plate and a second surface opposite the first surface. The second surface of the faceplate and the substrate support may at least partially define a processing region within the semiconductor processing chamber. The faceplate may be characterized by a central axis, and the faceplate may define a plurality of apertures through the faceplate. The faceplate may define a plurality of recesses extending about and radially outward of the plurality of apertures.
    Type: Application
    Filed: April 23, 2020
    Publication date: October 28, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Fang Ruan, Prashant Kumar Kulshreshtha, Rajaram Narayanan, Diwakar Kedlaya
  • Publication number: 20210143029
    Abstract: A system may include a main line for delivering a first gas, and a sensor for measuring a concentration of a precursor in the first gas delivered through the main line. The system may further include first and second sublines for providing fluid access to first and second processing chambers, respectively. The first subline may include a first flow controller for controlling the first gas flowed through the first subline. The second subline may include a second flow controller for controlling the first gas flowed through the second subline. A delivery controller may be configured to control the first and second flow controllers based on the measured concentration of the precursor to deliver a first mixture of the first gas and a second gas and a second mixture of the first and second gases into the first and second semiconductor processing chambers, respectively.
    Type: Application
    Filed: November 11, 2020
    Publication date: May 13, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Diwakar Kedlaya, Fang Ruan, Zubin Huang, Ganesh Balasubramanian, Kaushik Alayavalli, Martin Seamons, Kwangduk Lee, Rajaram Narayanan, Karthik Janakiraman
  • Publication number: 20200266064
    Abstract: Embodiments of the present disclosure generally relate to a method of processing a substrate. The method includes exposing the substrate positioned in a processing volume of a processing chamber to a hydrocarbon-containing gas mixture, exposing the substrate to a boron-containing gas mixture, and generating a radio frequency (RF) plasma in the processing volume to deposit a boron-carbon film on the substrate. The hydrocarbon-containing gas mixture and the boron-containing gas mixture are flowed into the processing volume at a precursor ratio of (boron-containing gas mixture/((boron-containing gas mixture)+hydrocarbon-containing gas mixture) of about 0.38 to about 0.85. The boron-carbon hardmask film provides high modulus, etch selectivity, and stress for high aspect-ratio features (e.g., 10:1 or above) and smaller dimension devices (e.g., 7 nm node or below).
    Type: Application
    Filed: February 13, 2020
    Publication date: August 20, 2020
    Inventors: Rajaram NARAYANAN, Fang RUAN, Prashant Kumar KULSHRESHTHA, Diwakar N. KEDLAYA, Karthik JANAKIRAMAN