Patents by Inventor Rajarao Jammy

Rajarao Jammy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060189083
    Abstract: An ultrathin high-k gate dielectric made for use in a field-effect transistor is provided. The gate dialectric is made by depositing a high-k gate dielectric material on a substrate and forming an ultrathin high-k dielectric by performing a thinning process on the high-k gate dielectric material. The process used to thin the high-k dielectric material can include at least one of any number of processes including wet etching, dry etching (including gas cluster ion beam (GCIB) processing), and hybrid damage/wet etching.
    Type: Application
    Filed: April 13, 2006
    Publication date: August 24, 2006
    Applicant: International Business Machines Corporation
    Inventors: Katherine Saenger, Rajarao Jammy, Vijay Narayanan
  • Publication number: 20060186490
    Abstract: A semiconductor device such as a complementary metal oxide semiconductor (CMOS) comprising at least one FET that comprises a gate electrode comprising a metal carbide and method of fabrication are provided. The CMOS comprises dual work function metal gate electrodes whereby the dual work functions are provided by a metal and a carbide of a metal.
    Type: Application
    Filed: March 10, 2006
    Publication date: August 24, 2006
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, Christophe Detavernier, Rajarao Jammy, Katherine Saenger
  • Patent number: 7091118
    Abstract: A semiconductor device with a replacement metal gate and the process for making the same removes a dummy gate from a semiconductor device. Within the recess left by the dummy gate is a silicon layer on a gate dielectric layer. A replacement metal is deposited on the thin silicon layer and then reacted with the silicon layer to form a metal-rich silicon layer on the gate dielectric layer.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: August 15, 2006
    Assignees: Advanced Micro Devices, Inc., International Business Machines
    Inventors: James Pan, John Pellerin, Linda R. Black, Michael Chudzik, Rajarao Jammy
  • Publication number: 20060166474
    Abstract: A method is provided for electroplating a gate metal or other conducting or semiconducting material directly on a dielectric such as a gate dielectric. The method involves selecting a substrate, dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be passed from the substrate through the dielectric layer into the electrolyte solution or melt. Methods are also provided for electrochemical modification of dielectrics utilizing through-dielectric current flow.
    Type: Application
    Filed: January 27, 2005
    Publication date: July 27, 2006
    Applicant: International Business Machines Corporation
    Inventors: Philippe Vereecken, Veeraraghavan Basker, Cyril Cabral, Emanuel Cooper, Hariklia Deligianni, Martin Frank, Rajarao Jammy, Vamsi Paruchuri, Katherine Saenger, Xiaoyan Shao
  • Publication number: 20060151846
    Abstract: A compound metal comprising HfSiN which is a n-type metal having a workfunction of about 4.0 to about 4.5, preferably about 4.3, eV which is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer. Furthermore, after annealing the stack of HfSiN/high k dielectric/interfacial layer at a high temperature (on the order of about 1000° C.), there is a reduction of the interfacial layer, thus the gate stack produces a very small equivalent oxide thickness (12 ? classical), which cannot be achieved using TaSiN.
    Type: Application
    Filed: January 13, 2005
    Publication date: July 13, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alessandro Callegari, Martin Frank, Rajarao Jammy, Dianne Lacey, Fenton McFeely, Sufi Zafar
  • Patent number: 7071122
    Abstract: A method for making an ultrathin high-k gate dielectric for use in a field effect transistor is provided. The method involves depositing a high-k gate dielectric material on a substrate and forming an ultrathin high-k dielectric by performing a thinning process on the high-k gate dielectric material. The process used to thin the high-k dielectric material can include at least one of any number of processes including wet etching, dry etching (including gas cluster ion beam (GCIB) processing), and hybrid damage/wet etching. In addition to the above, the present invention relates to an ultrathin high-k gate dielectric made for use in a field-effect transistor made by the above method.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: July 4, 2006
    Assignee: International Business Machines Corporation
    Inventors: Katherine L. Saenger, Rajarao Jammy, Vijay Narayanan
  • Patent number: 7064050
    Abstract: A semiconductor device such as a complementary metal oxide semiconductor (CMOS) comprising at least one FET that comprises a gate electrode comprising a metal carbide and method of fabrication are provided. The CMOS comprises dual work function metal gate electrodes whereby the dual work functions are provided by a metal and a carbide of a metal.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: June 20, 2006
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Christophe Detavernier, Rajarao Jammy, Katherine L. Saenger
  • Publication number: 20060102968
    Abstract: A semiconductor structure is provided that includes a Vt stabilization layer between a gate dielectric and a gate electrode. The Vt stabilization layer is capable of stabilizing the structure's threshold voltage and flatband voltage to a targeted value and comprises a nitrided metal oxide, or a nitrogen-free metal oxide, with the proviso that when the Vt stabilization layer comprises a nitrogen-free metal oxide, at least one of the semiconductor substrate or the gate dielectric includes nitrogen. The present invention also provides a method of fabricating such a structure.
    Type: Application
    Filed: November 15, 2004
    Publication date: May 18, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nestor Bojarczuk, Cyril Cabral, Eduard Cartier, Martin Frank, Evgeni Gousev, Supratik Guha, Paul Jamison, Rajarao Jammy, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20060091432
    Abstract: A MOSFET is disclosed that comprises a channel between a source extension and a drain extension, a dielectric layer over the channel, a gate spacer structure formed on a peripheral portion of the dielectric layer, and a gate formed on a non-peripheral portion of the dielectric layer, with at least a lower portion of the gate surrounded by and in contact with an internal surface of the gate spacer structure, and the gate is substantially aligned at its bottom with the channel. One method of forming the MOSFET comprises forming the dielectric layer, the gate spacer structure and the gate contact inside a cavity that has been formed by removing a sacrificial gate and spacer structure.
    Type: Application
    Filed: November 2, 2004
    Publication date: May 4, 2006
    Applicant: International Business Machines Corporation
    Inventors: Supratik Guha, Hussein Hanafi, Rajarao Jammy, Paul Solomon
  • Patent number: 7030481
    Abstract: A carrier for a semiconductor component is provided having passive components integrated in its substrate. The passive components include decoupling components, such as capacitors and resistors. A set of connections is integrated to provide a close electrical proximity to the supported components.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: April 18, 2006
    Assignee: Internation Business Machines Corporation
    Inventors: Michael Patrick Chudzik, Robert H. Dennard, Rama Divakaruni, Bruce Kenneth Furman, Rajarao Jammy, Chandrasekhar Narayan, Sampath Purushothaman, Joseph F. Shepard, Jr., Anna Wanda Topol
  • Patent number: 6998666
    Abstract: A method of fabricating an integrated circuit device comprises etching a trench in a substrate and forming a dynamic random access memory (DRAM) cell having a storage capacitor at a lower end and an overlying vertical metal oxide semiconductor field effect transistor (MOSFET) comprising a gate conductor and a boron-doped channel. The method includes forming trenches adjacent the DRAM cell and a silicon-oxy-nitride isolation liner on either side of the DRAM cell, adjacent the gate conductor. Isolation regions are then formed in the trenches on either side of the DRAM cell. Thereafter, the DRAM cell, including the boron-containing channel region adjacent the gate conductor, is subjected to elevated temperatures by thermal processing, for example, forming a support device on the substrate adjacent the isolation regions. The nitride-containing isolation liner reduces segregation of the boron in the channel region, as compared to an essentially nitrogen-free oxide-containing isolation liner.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: February 14, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jochen Beintner, Rama Divakaruni, Rajarao Jammy
  • Publication number: 20060022280
    Abstract: An advanced gate structure that includes a fully silicided metal gate and silicided source and drain regions in which the fully silicided metal gate has a thickness that is greater than the thickness of the silicided source/drain regions is provided. A method of forming the advanced gate structure is also provided in which the silicided source and drain regions are formed prior to formation of the silicided metal gate region.
    Type: Application
    Filed: July 14, 2004
    Publication date: February 2, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, Chester Dziobkowski, Sunfei Fang, Evgeni Gousev, Rajarao Jammy, Vijay Narayanan, Vamsi Paruchuri, Ghavam Shahidi, Michelle Steen, Clement Wann
  • Publication number: 20050280105
    Abstract: The present invention provides a gate stack structure that has high mobilites and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2/V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
    Type: Application
    Filed: June 22, 2004
    Publication date: December 22, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wanda Andreoni, Alessandro Callegari, Eduard Cartier, Alessandro Curioni, Christopher D'Emic, Evengi Gousev, Michael Gribelyuk, Paul Jamison, Rajarao Jammy, Dianne Lacey, Fenton McFeely, Vijay Narayanan, Carlo Pignedoli, Joseph Shepard, Sufi Zafar
  • Publication number: 20050269635
    Abstract: The present invention provides a semiconductor structure comprising a semiconductor substrate having source and drain diffusion regions located therein, the source and drain diffusion regions being separated by a device channel; and a gate stack located on top of the device channel, the gate stack comprising a high-k gate dielectric, an insulating interlayer and a fully silicided metal gate conductor, the insulating interlayer located between the high-k gate dielectric and the fully silicided metal gate conductor, wherein the insulating interlayer is capable of stabilizing threshold voltage and flatband voltage of the semiconductor structure to a targeted value.
    Type: Application
    Filed: October 1, 2004
    Publication date: December 8, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nestor Bojarczuk, Cyril Cabral, Eduard Cartier, Matthew Copel, Martin Frank, Evgeni Gousev, Supratik Guha, Rajarao Jammy, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20050269634
    Abstract: A method of forming a CMOS structure, and the device produced therefrom, having improved threshold voltage and flatband voltage stability. The inventive method includes the steps of providing a semiconductor substrate having an nFET region and a pFET region; forming a dielectric stack atop the semiconductor substrate comprising an insulating interlayer atop a high k dielectric; removing the insulating interlayer from the nFET region without removing the insulating interlayer from the pFET region; and providing at least one gate stack in the pFET region and at least one gate stack in the nFET region. The insulating interlayer can be AlN or AlOxNy. The high k dielectric can be HfO2, hafnium silicate or hafnium silicon oxynitride. The insulating interlayer can be removed from the nFET region by a wet etch including a HCl/H2O2 peroxide solution.
    Type: Application
    Filed: June 4, 2004
    Publication date: December 8, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nestor Bojarczuk, Cyril Cabral, Eduard Cartier, Matthew Copel, Martin Frank, Evgeni Gousev, Supratik Guha, Rajarao Jammy, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 6962872
    Abstract: A carrier for a semiconductor component is provided having passive components integrated in its substrate. The passive components include decoupling components, such as capacitors and resistors. A set of connections is integrated to provide a close electrical proximity to the supported components.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: November 8, 2005
    Assignee: International Business Machines Corporation
    Inventors: Michael Patrick Chudzik, Robert H. Dennard, Rama Divakaruni, Bruce Kenneth Furman, Rajarao Jammy, Chandrasekhar Narayan, Sampath Purushothaman, Joseph F. Shepard, Jr., Anna Wanda Topol
  • Patent number: 6960514
    Abstract: An improved pitcher-shaped active area for a field effect transistor that, for a given gate length, achieves an increase in transistor on-current, a decrease in transistor serial resistance, and a decrease in contact resistance. The pitcher-shaped active area structure includes at least two shallow trench insulator (STI) structures formed into a substrate that defines an active area structure, which includes a widened top portion with a larger width than a bottom portion. An improved fabrication method for forming the improved pitcher-shaped active area is also described that implements a step to form STI structure divots followed by a step to migrate substrate material into at least portions of the divots, thereby forming a widened top portion of the active area structure. The fabrication method of present invention forms the pitcher-shaped active area without the use of lithography, and therefore, is not limited by the smallest ground rules of lithography tooling.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: November 1, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jochen Beintner, Rama Divakaruni, Johnathan Faltermeier, Philip L. Flaitz, Oleg Gluschenkov, Carol J. Heenan, Rajarao Jammy, Byeong Kim, Mihel Seitz, Akira Sudo, Yoichi Takegawa
  • Patent number: 6936512
    Abstract: Disclosed herein is a method, in an integrated, of forming a high-K node dielectric of a trench capacitor and a trench sidewall device dielectric at the same time. The method includes forming a trench in a single crystal layer of a semiconductor substrate, and forming an isolation collar along a portion of the trench sidewall, wherein the collar has a top below the top of the trench in the single crystal layer. Then, at the same time, a high-K dielectric is formed along the trench sidewall, the high-K dielectric extending in both an upper portion of the trench including above the isolation collar and in a lower portion of the trench below the isolation collar.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: August 30, 2005
    Assignee: International Business Machines Corporation
    Inventors: Michael P. Chudzik, Rajarao Jammy, Carl John Radens, Kenneth T. Settlemyer, Jr., Padraic Shafer, Joseph F. Shepard, Jr.
  • Publication number: 20050179112
    Abstract: Isolation trenches and capacitor trenches containing vertical FETs (or any prior levels p-n junctions or dissimilar material interfaces) having an aspect ratio up to 60 are filled with a process comprising: applying a spin-on material based on silazane and having a low molecular weight; pre-baking the applied material in an oxygen ambient at a temperature below about 450 deg C.; converting the stress in the material by heating at an intermediate temperature between 450 deg C. and 800 deg C. in an H20 ambient; and heating again at an elevated temperature in an O2 ambient, resulting in a material that is stable up to 1000 deg C., has a compressive stress that may be tuned by variation of the process parameters, has an etch rate comparable to oxide dielectric formed by HDP techniques, and is durable enough to withstand CMP polishing.
    Type: Application
    Filed: January 12, 2005
    Publication date: August 18, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Belyansky, Rama Divakaruni, Laertis Economikos, Rajarao Jammy, Kenneth Settlemyer, Padraic Shafer
  • Publication number: 20050151181
    Abstract: A method of fabricating an integrated circuit device comprises etching a trench in a substrate and forming a dynamic random access memory (DRAM) cell having a storage capacitor at a lower end and an overlying vertical metal oxide semiconductor field effect transistor (MOSFET) comprising a gate conductor and a boron-doped channel. The method includes forming trenches adjacent the DRAM cell and a silicon-oxy-nitride isolation liner on either side of the DRAM cell, adjacent the gate conductor. Isolation regions are then formed in the trenches on either side of the DRAM cell. Thereafter, the DRAM cell, including the boron-containing channel region adjacent the gate conductor, is subjected to elevated temperatures by thermal processing, for example, forming a support device on the substrate adjacent the isolation regions. The nitride-containing isolation liner reduces segregation of the boron in the channel region, as compared to an essentially nitrogen-free oxide-containing isolation liner.
    Type: Application
    Filed: January 9, 2004
    Publication date: July 14, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jochen Beintner, Rama Divakaruni, Rajarao Jammy