Patents by Inventor Rajeev G. Kamat

Rajeev G. Kamat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9249484
    Abstract: New 7xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 7xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 7xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: February 2, 2016
    Assignee: ALCOA INC.
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Patent number: 9194028
    Abstract: New 2xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 2xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 2xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: November 24, 2015
    Assignee: Alcoa Inc.
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Patent number: 9067623
    Abstract: An automobile component including an aluminum alloy product having a base aluminum alloy layer and a first additional aluminum alloy layer disposed directly on the base layer. The base aluminum alloy layer includes 2.0 to 22 wt. % zinc and the zinc is a predominate alloying element of the base layer other than aluminum and the first additional aluminum alloy layer includes 0.20 to 8.0 wt. % magnesium and the magnesium is a predominate alloying element of the first additional aluminum alloy layer other than aluminum. The automobile component may include outer panel sections, high form inner sections, reinforcement sections, crash sections, large flat panel sections, and high strength sections and, when tested in a static axial crush test, a peak load of the automobile component increases at least 20% when compared to alloy 6014 in the T6 temper.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: June 30, 2015
    Assignee: Alcoa Inc.
    Inventors: Roberto J. Rioja, Brett P. Conner, Rajeev G. Kamat
  • Patent number: 8999079
    Abstract: New 6xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 6xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 6xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: April 7, 2015
    Assignee: Alcoa, Inc.
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Publication number: 20150020930
    Abstract: New 7xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 7xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 7xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: September 3, 2014
    Publication date: January 22, 2015
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Publication number: 20140367000
    Abstract: New Al—Li alloy bodies and methods of producing the same are disclosed. The new Al—Li alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new Al—Li alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 18, 2014
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Publication number: 20140366999
    Abstract: New 2xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 2xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 2xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Publication number: 20140366997
    Abstract: New HT aluminum alloy bodies and methods of producing the same are disclosed. The new HT aluminum alloy bodies contain 0.20-2.0 wt. % Mg, 0.10-1.5 wt. % Si, 0.01-1.0 wt. % Fe, and, 0.10-1.0 wt. % Cu, wherein, when Si+Cu<0.60 wt. %, then Fe+Mn?1.5 wt. %, optionally with up to 1.5 wt. % Mn, optionally with up to 1.5 wt. % Zn, wherein at least one of the Mg, the Si, the Fe, the Cu, the optional Mn, and the optional Zn is the predominate alloying element of the aluminum alloy sheet other than the aluminum, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new HT aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 18, 2014
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin, Lynette M. Karabin, Thomas N. Rouns
  • Publication number: 20140366998
    Abstract: New 6xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 6xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 6xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 18, 2014
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Publication number: 20140248177
    Abstract: New 6xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 6xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 6xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: August 17, 2012
    Publication date: September 4, 2014
    Applicant: Alcoa Inc.
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Publication number: 20140230974
    Abstract: New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: March 9, 2013
    Publication date: August 21, 2014
    Applicant: ALCOA INC.
    Inventors: Jen C. Lin, John M. Newman, Ralph R. Sawtell, Rajeev G. Kamat, Darl G. Boysel, Gary H. Bray, James Daniel Bryant, Brett P. Connor, Mario Greco, Gino Norman Iasella, David J. McNeish, Shawn J. Murtha, Roberto J. Rioja, Shawn P. Sullivan
  • Publication number: 20130068351
    Abstract: Multi-alloy composite sheets and methods of producing the composite sheets for use in automotive applications are disclosed. The automotive application may include an automotive panel having a bi-layer or a tri-layer composite sheet with 3xxx and 6xxx aluminum alloys. The composite sheets may be produced by roll bonding or multi-alloy casting, among other techniques. Each of the composite sheets may demonstrate good flat hem rating and mechanical properties, long shelf life, and high dent resistance, among other properties.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 21, 2013
    Applicant: Alcoa Inc.
    Inventors: Rajeev G. Kamat, John F. Butler, JR.
  • Publication number: 20120055590
    Abstract: New Al—Li alloy bodies and methods of producing the same are disclosed. The new Al—Li alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new Al—Li alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 8, 2012
    Applicant: Alcoa Inc.
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Publication number: 20120055591
    Abstract: New 6xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 6xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 6xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 8, 2012
    Applicant: Alcoa Inc.
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Publication number: 20120055588
    Abstract: New 7xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 7xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 7xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 8, 2012
    Applicant: Alcoa Inc.
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Publication number: 20120055589
    Abstract: New 2xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 2xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 2xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 8, 2012
    Applicant: Alcoa Inc.
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Publication number: 20100279143
    Abstract: Multi-alloy composite sheets and methods of producing the composite sheets for use in automotive applications are disclosed. The automotive application may include an automotive panel having a bi-layer or a tri-layer composite sheet with 3xxx and 6xxx aluminum alloys. The composite sheets may be produced by roll bonding or multi-alloy casting, among other techniques. Each of the composite sheets may demonstrate good flat hem rating and mechanical properties, long shelf life, and high dent resistance, among other properties.
    Type: Application
    Filed: April 27, 2010
    Publication date: November 4, 2010
    Inventors: Rajeev G. KAMAT, John F. BUTLER, JR.
  • Patent number: 7503986
    Abstract: A method for producing a heat treated aluminum alloy product in a shortened period of time, the method comprising: (a) providing a heat treatable aluminum alloy; (b) working the heat treatable aluminum alloy at a solutionizing temperature to form a product; (c) first stage cooling the product to a critical temperature at which precipitation of second phase particles of the heat treatable aluminum alloy is negligible, wherein the first stage cooling comprises a first stage cooling rate from about 15° F. per second to about 100° F. per second; (d) second stage cooling the product to ambient temperature; (e) heating the product to an artificial aging temperature; and (f) artificially aging the product at the artificial aging temperature for a predetermined artificial aging time to form the heat treated aluminum alloy product.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: March 17, 2009
    Assignee: Alcoa, Inc.
    Inventors: Rajeev G. Kamat, William D. Bennon, Shawn J. Murtha
  • Publication number: 20040140025
    Abstract: A method for producing a heat treated aluminum alloy product in a shortened period of time, the method comprising: (a) providing a heat treatable aluminum alloy; (b) working the heat treatable aluminum alloy at a solutionizing temperature to form a product; (c) first stage cooling the product to a critical temperature at which precipitation of second phase particles of the heat treatable aluminum alloy is negligible, wherein the first stage cooling comprises a first stage cooling rate from about 15° F. per second to about 100° F. per second; (d) second stage cooling the product to ambient temperature; (e) heating the product to an artificial aging temperature; and (f) artificially aging the product at the artificial aging temperature for a predetermined artificial aging time to form the heat treated aluminum alloy product.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 22, 2004
    Inventors: Rajeev G. Kamat, William D. Bennon, Shawn J. Murtha
  • Publication number: 20040140026
    Abstract: A method for producing a heat-treated aluminum alloy casting in a shortened period of time, the method comprising: (a) providing a heat treatable aluminum alloy casting at a solutionizing temperature; (b) first stage cooling the heat treatable aluminum alloy casting to a critical temperature at which precipitation of second phase particles of the heat treatable aluminum alloy casting is negligible, wherein the first stage cooling comprises a first stage cooling rate from about 15° F. per second to about 100° F. per second; (c) second stage cooling said heat treatable aluminum alloy casting to ambient temperature; (d) heating said heat treatable aluminum alloy casting to an artificial aging temperature; and (e) artificially aging said heat treatable aluminum alloy casting at said artificial aging temperature for a predetermined artificial aging time to form said heat-treated aluminum alloy casting.
    Type: Application
    Filed: April 9, 2003
    Publication date: July 22, 2004
    Inventors: Rajeev G. Kamat, William D. Bennon, Shawn J. Murtha