Patents by Inventor Rajesh Langoju

Rajesh Langoju has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240062331
    Abstract: Systems/techniques that facilitate deep learning robustness against display field of view (DFOV) variations are provided. In various embodiments, a system can access a deep learning neural network and a medical image. In various aspects, a first DFOV, and thus a first spatial resolution, on which the deep learning neural network is trained can fail to match a second DFOV, and thus a second spatial resolution, exhibited by the medical image. In various instances, the system can execute the deep learning neural network on a resampled version of the medical image, where the resampled version of the medical image can exhibit the first DFOV and thus the first spatial resolution. In various cases, the system can generate the resampled version of the medical image by up-sampling or down-sampling the medical image until it exhibits the first DFOV and thus the first spatial resolution.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Inventors: Rajesh Langoju, Prasad Sudhakara Murthy, Utkarsh Agrawal, Risa Shigemasa, Bhushan Patil, Bipul Das, Yasuhiro Imai
  • Patent number: 11823354
    Abstract: A computer-implemented method for correcting artifacts in computed tomography data is provided. The method includes inputting a sinogram into a trained sinogram correction network, wherein the sinogram is missing a pixel value for at least one pixel. The method also includes processing the sinogram via one or more layers of the trained sinogram correction network, wherein processing the sinogram includes deriving complementary information from the sinogram and estimating the pixel value for the at least one pixel based on the complementary information. The method further includes outputting from the trained sinogram correction network a corrected sinogram having the estimated pixel value.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: November 21, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Bhushan Dayaram Patil, Rajesh Langoju, Utkarsh Agrawal, Bipul Das, Jiang Hsieh
  • Publication number: 20230048231
    Abstract: Various methods and systems are provided for computed tomography imaging. In one embodiment, a method includes acquiring, with an x-ray detector and an x-ray source coupled to a gantry, a three-dimensional image volume of a subject while the subject moves through a bore of the gantry and the gantry rotates the x-ray detector and the x-ray source around the subject, inputting the three-dimensional image volume to a trained deep neural network to generate a corrected three-dimensional image volume with a reduction in aliasing artifacts present in the three-dimensional image volume, and outputting the corrected three-dimensional image volume. In this way, aliasing artifacts caused by sub-sampling may be removed from computed tomography images while preserving details, texture, and sharpness in the computed tomography images.
    Type: Application
    Filed: August 11, 2021
    Publication date: February 16, 2023
    Inventors: Rajesh Langoju, Utkarsh Agrawal, Risa Shigemasa, Bipul Das, Yasuhiro Imai, Jiang Hsieh
  • Publication number: 20230029188
    Abstract: The current disclosure provides methods and systems to reduce an amount of structured and unstructured noise in image data. Specifically, a multi-stage deep learning method is provided, comprising training a deep learning network using a set of training pairs interchangeably including input data from a first noisy dataset with a first noise level and target data from a second noisy dataset with a second noise level, and input data from the second noisy dataset and target data from the first noisy dataset; generating an ultra-low noise data equivalent based on a low noise data fed into the trained deep learning network; and retraining the deep learning network on the set of training pairs using the target data of the set of training pairs in a first retraining step, and using the ultra-low noise data equivalent as target data in a second retraining step.
    Type: Application
    Filed: July 26, 2021
    Publication date: January 26, 2023
    Inventors: Rajesh Langoju, Utkarsh Agrawal, Bhushan Patil, Vanika Singhal, Bipul Das, Jiang Hsieh
  • Publication number: 20220327664
    Abstract: A computer-implemented method for correcting artifacts in computed tomography data is provided. The method includes inputting a sinogram into a trained sinogram correction network, wherein the sinogram is missing a pixel value for at least one pixel. The method also includes processing the sinogram via one or more layers of the trained sinogram correction network, wherein processing the sinogram includes deriving complementary information from the sinogram and estimating the pixel value for the at least one pixel based on the complementary information. The method further includes outputting from the trained sinogram correction network a corrected sinogram having the estimated pixel value.
    Type: Application
    Filed: April 8, 2021
    Publication date: October 13, 2022
    Inventors: Bhushan Dayaram Patil, Rajesh Langoju, Utkarsh Agrawal, Bipul Das, Jiang Hsieh
  • Patent number: 10481002
    Abstract: A system for detecting an array of samples having detectable samples and at least one reference sample is provided. The system comprises an electromagnetic radiation source, a sensing surface comprising a plurality of sample fields, wherein the plurality of sample fields comprise at least one reference field, a phase difference generator configured to introduce differences in pathlengths of one or more samples in the array of samples, and an imaging spectrometer configured to image one or more samples in the array of samples.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 19, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Masako Yamada, Sandip Maity, Sameer Dinkar Vartak, Rajesh Langoju, Abhijit Patil
  • Patent number: 9092895
    Abstract: A system and method for soft-field reconstruction are provided. One method includes establishing an initial estimate of a property distribution of an object, using a first reconstruction process to reconstruct an estimate of the actual property distribution and using a second reconstruction process different than the first reconstruction process to further reconstruct the estimate of the actual property distribution. A solution from the first reconstruction process is used as an initial estimate in the second reconstruction process.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: July 28, 2015
    Assignee: General Electric Company
    Inventors: Alexander Seth Ross, Veera Venkata Lakshmi Rajesh Langoju
  • Patent number: 8942787
    Abstract: An iteration method for computing a distribution of one or more properties within an object comprises defining a first mesh of the object, applying an excitation to the object, computing a response of the object to the applied excitation, obtaining a reference response of the object corresponding to the applied excitation, computing a distribution of one or more properties of the object, and updating at least a subset of the nodes of the first mesh to form an updated mesh of the object. The distribution of one or more properties of the object is computed using the computed response, the reference response, and the first mesh. The first mesh includes a plurality of nodes and elements. A connectivity relationship of the subset of the nodes in the updated mesh remains the same as in the first mesh.
    Type: Grant
    Filed: December 11, 2011
    Date of Patent: January 27, 2015
    Assignee: General Electric Company
    Inventors: Wei Tan, Alexander Seth Ross, Veera Venkata Lakshmi Rajesh Langoju, Ran Niu, Zhilin Wu, Weihua Gao
  • Publication number: 20140249055
    Abstract: A system for detecting an array of samples having detectable samples and at least one reference sample is provided. The system comprises an electromagnetic radiation source, a sensing surface comprising a plurality of sample fields, wherein the plurality of sample fields comprise at least one reference field, a phase difference generator configured to introduce differences in pathlengths of one or more samples in the array of samples, and an imaging spectrometer configured to image one or more samples in the array of samples.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 4, 2014
    Inventors: Masako Yamada, Sandip Maity, Sameer Dikar Vartak, Rajesh Langoju, Abhijit Patil
  • Patent number: 8792102
    Abstract: A detection system for a two-dimensional (2D) array is provided. The detection system comprises an electromagnetic radiation source, a phase difference generator, a detection surface having a plurality of sample fields that can receive samples, and an imaging spectrometer configured to discriminate between two or more spatially separated points.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 29, 2014
    Assignee: General Electric Company
    Inventors: Abhijit Vishwas Patil, Sandip Maity, Veera Venkata Lakshmi Rajesh Langoju, Anusha Rammohan, Sameer Dinkar Vartak, Umakant Damodar Rapol
  • Publication number: 20120172719
    Abstract: An iteration method for computing a distribution of one or more properties within an object comprises defining a first mesh of the object, applying an excitation to the object, computing a response of the object to the applied excitation, obtaining a reference response of the object corresponding to the applied excitation, computing a distribution of one or more properties of the object, and updating at least a subset of the nodes of the first mesh to form an updated mesh of the object. The distribution of one or more properties of the object is computed using the computed response, the reference response, and the first mesh. The first mesh includes a plurality of nodes and elements. A connectivity relationship of the subset of the nodes in the updated mesh remains the same as in the first mesh.
    Type: Application
    Filed: December 11, 2011
    Publication date: July 5, 2012
    Inventors: Wei TAN, Alexander Seth Ross, Veera Venkata Lakshmi Rajesh Langoju, Ran Niu, Zhilin Wu, Weihua Gao
  • Publication number: 20120157827
    Abstract: A system and method for soft-field reconstruction are provided. One method includes establishing an initial estimate of a property distribution of an object, using a first reconstruction process to reconstruct an estimate of the actual property distribution and using a second reconstruction process different than the first reconstruction process to further reconstruct the estimate of the actual property distribution. A solution from the first reconstruction process is used as an initial estimate in the second reconstruction process.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 21, 2012
    Applicant: General Electric Company
    Inventors: Alexander Seth Ross, Veera Venkata Lakshmi Rajesh Langoju
  • Publication number: 20120105852
    Abstract: A detection system for a two-dimensional (2D) array is provided. The detection system comprises an electromagnetic radiation source, a phase difference generator, a detection surface having a plurality of sample fields that can receive samples, and an imaging spectrometer configured to discriminate between two or more spatially separated points.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 3, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Abhijit Vishwas Patil, Sandip Maity, Veera Venkata Lakshmi Rajesh Langoju, Anusha Rammohan, Sameer Dinkar Vartak, Umakant Damodar Rapol