Patents by Inventor Rajesh Ramalingam Varadharajan

Rajesh Ramalingam Varadharajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11906626
    Abstract: Described herein are systems and methods that that mitigate avalanche photodiode (APD) blinding and allow for improved accuracy in the detection of a multi-return light signal. A blinding spot may occur due to saturation of a primary APD. The systems and methods include the incorporation of a redundant APD and the utilization of time diversity and space diversity. Detection by the APDs is activated by a bias signal. The redundant APD receives a time delayed bias signal compared to the primary APD. Additionally, the redundant APD is positioned off the main focal plane in order to attenuate an output of the redundant APD. With attenuation, the redundant APD may not saturate and may have a successful detection during the blinding spot of the primary APD. Embodiments may include multiple primary APDs and multiple secondary APDs.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: February 20, 2024
    Assignee: Velodyne Lidar USA, Inc.
    Inventors: Kiran Kumar Gunnam, Nitinkumar Sagarbhai Barot, Rajesh Ramalingam Varadharajan, Roger Jullian Pinto, Kanke Gao
  • Patent number: 11774559
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: October 3, 2023
    Assignee: Velodyne Lidar USA, Inc.
    Inventors: Pravin Kumar Venkatesan, Abhilash Goyal, William B. Etheridge, Rajesh Ramalingam Varadharajan
  • Publication number: 20220146642
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: Pravin Kumar Venkatesan, Abhilash Goyal, William B. Etheridge, Rajesh Ramalingam Varadharajan
  • Patent number: 11231487
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: January 25, 2022
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: Pravin Kumar Venkatesan, Abhilash Goyal, William B. Etheridge, Rajesh Ramalingam Varadharajan
  • Publication number: 20210231809
    Abstract: Described herein are systems and methods that that mitigate avalanche photodiode (APD) blinding and allow for improved accuracy in the detection of a multi-return light signal. A blinding spot may occur due to saturation of a primary APD. The systems and methods include the incorporation of a redundant APD and the utilization of time diversity and space diversity. Detection by the APDs is activated by a bias signal. The redundant APD receives a time delayed bias signal compared to the primary APD. Additionally, the redundant APD is positioned off the main focal plane in order to attenuate an output of the redundant APD. With attenuation, the redundant APD may not saturate and may have a successful detection during the blinding spot of the primary APD. Embodiments may include multiple primary APDs and multiple secondary APDs.
    Type: Application
    Filed: September 10, 2020
    Publication date: July 29, 2021
    Inventors: Kiran Kumar Gunnam, Nitinkumar Sagarbhai Barot, Rajesh Ramalingam Varadharajan, Roger Jullian Pinto, Kanke Gao
  • Patent number: 10775486
    Abstract: Described herein are systems and methods that that mitigate avalanche photodiode (APD) blinding and allow for improved accuracy in the detection of a multi-return light signal. A blinding spot may occur due to saturation of a primary APD. The systems and methods include the incorporation of a redundant APD and the utilization of time diversity and space diversity. Detection by the APDs is activated by a bias signal. The redundant APD receives a time delayed bias signal compared to the primary APD. Additionally, the redundant APD is positioned off the main focal plane in order to attenuate an output of the redundant APD. With attenuation, the redundant APD may not saturate and may have a successful detection during the blinding spot of the primary APD. Embodiments may include multiple primary APDs and multiple secondary APDs.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: September 15, 2020
    Assignee: Velodyne LIDAR, Inc.
    Inventors: Kiran Kumar Gunnam, Nitinkumar Sagarbhai Barot, Rajesh Ramalingam Varadharajan, Roger Jullian Pinto, Kanke Gao
  • Publication number: 20200144859
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Applicant: VELODYNE LIDAR, INC.
    Inventors: Pravin Kumar Venkatesan, Abhilash Goyal, William B. Etheridge, Rajesh Ramalingam Varadharajan
  • Publication number: 20200088844
    Abstract: Described herein are systems and methods for improving detection of a return signal in a light ranging and detection system (LiDAR). The method includes the following steps at the LiDAR system: encoding and transmitting a sequence of pulses based on a user signature. Then, receiving a multi-return signal based on a reflection off objects of the sequences of pulses. The multi-return signal may be decoded based on the user signature, and then authenticated the via a correlation calculation. The user signature may determine an amplitude of a first pulse in the sequence of pulses, an amplitude of a second pulse of the sequence of pulses, and an interval between the first pulse and the second pulse. A bit representation of the user signature is orthogonal to a bit representation of another user signature of another LiDAR system. The user signature may be dynamically adjusted by the LiDAR system.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 19, 2020
    Applicant: Velodyne LiDAR, Inc.
    Inventors: Kanke GAO, Kiran Kumar GUNNAM, Rajesh RAMALINGAM VARADHARAJAN, Anand GOPALAN, David HALL
  • Patent number: 10530185
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: January 7, 2020
    Assignee: Velodyne Lidar, Inc.
    Inventors: Pravin Kumar Venkatesan, Abhilash Goyal, William B Etheridge, Rajesh Ramalingam Varadharajan
  • Publication number: 20190252916
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Application
    Filed: February 15, 2018
    Publication date: August 15, 2019
    Applicant: Velodyne LiDAR, Inc.
    Inventors: PRAVIN KUMAR VENKATESAN, ABHILASH GOYAL, WILLIAM B. ETHERIDGE, RAJESH RAMALINGAM VARADHARAJAN
  • Publication number: 20190250256
    Abstract: Described herein are systems and methods that that mitigate avalanche photodiode (APD) blinding and allow for improved accuracy in the detection of a multi-return light signal. A blinding spot may occur due to saturation of a primary APD. The systems and methods include the incorporation of a redundant APD and the utilization of time diversity and space diversity. Detection by the APDs is activated by a bias signal. The redundant APD receives a time delayed bias signal compared to the primary APD. Additionally, the redundant APD is positioned off the main focal plane in order to attenuate an output of the redundant APD. With attenuation, the redundant APD may not saturate and may have a successful detection during the blinding spot of the primary APD. Embodiments may include multiple primary APDs and multiple secondary APDs.
    Type: Application
    Filed: February 15, 2018
    Publication date: August 15, 2019
    Applicant: Velodyne LiDAR, Inc.
    Inventors: KIRAN KUMAR GUNNAM, NITINKUMAR SAGARBHAI BAROT, RAJESH RAMALINGAM VARADHARAJAN, ROGER JULLIAN PINTO, KANKE GAO