Patents by Inventor Ralph Wystup

Ralph Wystup has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8988024
    Abstract: In a method and control system for controlling a brushless, electronically commutated electric motor (M), a three-phase source AC voltage (UN) is rectified and fed to a DC link voltage (UZK), which is supplied to an inverter (2) via a slim DC link circuit (6). A motor control unit (10) for PWM pulsing controls the inverter for commutating the electric motor (M) and adjusting the motor speed with a variable duty cycle (A). The duty cycle (A) is influenced by a compensating factor (k) such that the product of the DC link voltage (UZK) and a resulting DC link current (IZK) is kept constant in the link circuit (6). The DC link voltage (UZK) is monitored. When a first threshold value (UZKac.max1) of an AC component (UZKac) is exceeded, the compensating factor (k) is modified to lower the current AC component (UZKac) below the threshold value (UZKac.max1).
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: March 24, 2015
    Assignee: EBM-Papst Mulfingen GmbH & Co. KG
    Inventors: Daniel König, Ralph Wystup
  • Publication number: 20140312817
    Abstract: An electronic circuit comprises at least one semiconductor switch mounted with its switching path in series with an inductive load to be triggered, and at least one freewheeling element that interacts with the semiconductor switch during switching phases and is also mounted in series with the load. A control unit controls a control connection of the semiconductor switch with a variable control current as a function of the time profile of a voltage measured at the freewheeling element and/or as a function of the time profile of the voltage measured at the switching path. A method for triggering a semiconductor switch of such a circuit, triggered by a variable control current for switching, the control current predefined as a function of the time profile of a voltage measured at the freewheeling element and/or as a function of the time profile of the voltage measured at the switching path.
    Type: Application
    Filed: November 24, 2011
    Publication date: October 23, 2014
    Applicant: EBM-PAPST MULFINGEN GMBH & CO. KG
    Inventors: Helmut Lipp, Ralph Wystup, Fabian Schneider, Sebastian Schroth
  • Patent number: 8319461
    Abstract: The present invention relates to a method and a system for controlling a permanent magnet excited, brushless, electronically commutated, three-phase electric motor (2) wherein a single-phase main AC voltage (UN) having a mains frequency (fN) is rectified and supplied to an inverter (8) via a slender intermediate circuit (6) containing no, or minimum, intermediate circuit reactance as intermediate circuit voltage (Uz) pulsating at double the mains frequency (2fN) which is actuated for powering and commutating the electric motor (2). Control takes place by means of a field-oriented current-space vector regulator, wherein a q-current (iq) as torque-forming component of the current-space vector (i) is regulated perpendicularly to the permanent magnetic field and a d-current (id) can be regulated as a field-influencing component of the current-space vector (i) in the direction of the permanent magnet field.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: November 27, 2012
    Assignee: EBM-Papst Mulfingen GmbH & Co. KG
    Inventors: Ralph Wystup, Helmut Lipp
  • Publication number: 20120194110
    Abstract: In a method and control system for controlling a brushless, electronically commutated electric motor (M), a three-phase source AC voltage (UN) is rectified and fed to a DC link voltage (UZK), which is supplied to an inverter (2) via a slim DC link circuit (6). A motor control unit (10) for PWM pulsing controls the inverter for commutating the electric motor (M) and adjusting the motor speed with a variable duty cycle (A). The duty cycle (A) is influenced by a compensating factor (k) such that the product of the DC link voltage (UZK) and a resulting DC link current (IZK) is kept constant in the link circuit (6). The DC link voltage (UZK) is monitored. When a first threshold value (UZKac.max1) of an AC component (UZKac) is exceeded, the compensating factor (k) is modified to lower the current AC component (UZKac) below the threshold value (UZKac.max1).
    Type: Application
    Filed: January 18, 2012
    Publication date: August 2, 2012
    Inventors: Daniel König, Ralph Wystup
  • Patent number: 8212507
    Abstract: The present invention relates to a method and a control system for driving a three-strand brushless, electronically commutated electric motor (2), wherein a line AC voltage (UN) is rectified and fed via a slim DC link (8) with minimum DC link reactance as a DC link voltage (UZ) to an inverter (10) that can be driven to supply and commutate the electric motor (2). A pulsating DC voltage (UG) initially generated by rectifying the line AC voltage (UN) is dynamically increased with respect to its instantaneous values by a step-up chopper (18) in such a manner that the resulting DC link voltage (UZ) with a reduced ripple always lies above a defined limit voltage (U18/U1) over time. The control system consists of a network rectifier (6), a downstream slim DC link (8) with minimum DC link reactance and a controllable inverter (10) that can be supplied via the DC link and driven to commutate the electric motor (2).
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: July 3, 2012
    Assignee: EBM-Papst Mulfingen GmbH & Co. KG
    Inventors: Ralph Wystup, Helmut Lipp
  • Publication number: 20110025237
    Abstract: The present invention relates to a method and a system for controlling a permanent magnet excited, brushless, electronically commutated, three-phase electric motor (2) wherein a single-phase main AC voltage (UN) having a mains frequency (fN) is rectified and supplied to an inverter (8) via a slender intermediate circuit (6) containing no, or minimum, intermediate circuit reactance as intermediate circuit voltage (Uz) pulsating at double the mains frequency (2fN) which is actuated for powering and commutating the electric motor (2). Control takes place by means of a field-oriented current-space vector regulator, wherein a q-current (iq) as torque-forming component of the current-space vector (i) is regulated perpendicularly to the permanent magnetic field and a d-current (id) can be regulated as a field-influencing component of the current-space vector (i) in the direction of the permanent magnet field.
    Type: Application
    Filed: July 12, 2010
    Publication date: February 3, 2011
    Inventors: Ralph Wystup, Helmut Lipp
  • Publication number: 20100315027
    Abstract: The present invention relates to a method and a control system for driving a three-strand brushless, electronically commutated electric motor (2), wherein a line AC voltage (UN) is rectified and fed via a slim DC link (8) with minimum DC link reactance as a DC link voltage (UZ) to an inverter (10) that can be driven to supply and commutate the electric motor (2). A pulsating DC voltage (UG) initially generated by rectifying the line AC voltage (UN) is dynamically increased with respect to its instantaneous values by a step-up chopper (18) in such a manner that the resulting DC link voltage (UZ) with a reduced ripple always lies above a defined limit voltage (U18/U1) over time. The control system consists of a network rectifier (6), a downstream slim DC link (8) with minimum DC link reactance and a controllable inverter (10) that can be supplied via the DC link and driven to commutate the electric motor (2).
    Type: Application
    Filed: June 21, 2010
    Publication date: December 16, 2010
    Inventors: Ralph Wystup, Helmut Lipp