Patents by Inventor Ramesh Sivarajan

Ramesh Sivarajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230227314
    Abstract: The present invention relates to carbon nanostructure compositions such as single walled carbon nanotubes (SWCNT), and methods for purification thereof, such as separation by their electronic types (e.g., primarily semiconductor enrichment). The type separated, semiconducting SWCNTs, can be used in many downstream applications such as printed electronics, sensors, optoelectronics and solar energy conversion, among other applications.
    Type: Application
    Filed: May 11, 2021
    Publication date: July 20, 2023
    Inventors: Zhenan BAO, Theodore Z. GAO, Xiang XUE, Edward A. JACKSON, Colleen E. TREACY, Ramesh SIVARAJAN
  • Patent number: 11643763
    Abstract: The present disclosure provides scalable nanotube fabrics and methods for controlling or otherwise adjusting the nanotube length distribution of a nanotube application solution in order to realize scalable nanotube fabrics. In one aspect of the present disclosure, one or more filtering operations are used to remove relatively long nanotube elements from a nanotube solution until nanotube length distribution of the nanotube solution conforms to a preselected or desired nanotube length distribution profile. In another aspect of the present disclosure, a sono-chemical cutting process is used to break up relatively long nanotube elements within a nanotube application solution into relatively short nanotube elements to realize a pre-selected or desired nanotube length distribution profile.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: May 9, 2023
    Assignee: ZEON CORPORATION
    Inventors: Rahul Sen, Billy Smith, J. Thomas Kocab, Ramesh Sivarajan, Peter Sites, Thomas Rueckes, David A. Roberts
  • Patent number: 11450446
    Abstract: A multi-layered, transparent-conductive stack with improved mechanical robustness, and a method of making the same, is described. The multi-layered film includes a layer of a hybrid film and a layer of a transparent conductive oxide (TCO) coating that is sputter deposited and forms a contact with the hybrid film. The hybrid film includes an interconnected network of carbon nanotubes (CNTs) and a plurality of metal oxide nanoparticles (MONs). The plurality of MONs are randomly distributed in the interconnected network of CNTs forming an electrical contact with the CNTs.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: September 20, 2022
    Assignee: NANO-C, INC.
    Inventors: Ramesh Sivarajan, Henning Richter, Viktor Vejins
  • Patent number: 11177261
    Abstract: Under one aspect, a non-volatile nanotube diode device includes first and second terminals; a semiconductor element including a cathode and an anode, and capable of forming a conductive pathway between the cathode and anode in response to electrical stimulus applied to the first conductive terminal; and a nanotube switching element including a nanotube fabric article in electrical communication with the semiconductive element, the nanotube fabric article disposed between and capable of forming a conductive pathway between the semiconductor element and the second terminal, wherein electrical stimuli on the first and second terminals causes a plurality of logic states.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: November 16, 2021
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold
  • Publication number: 20210039987
    Abstract: Interlaced random networks of heterogeneous, rigid rod like particles such as metallic nanowires and carbon nanotubes are formed by various methods. The resulting combination provides characteristics that are unique and not attainable by either of the individual components on their own. In one of the embodiments, such heterogeneous networks are continuously formed on a master hot roller surface by application of the rigid rod components from separate sources and the post formed network is transferred fully or partially onto a receptor surface of a moving web directly in-contact with the master surface. In another embodiment the heterogeneous networks are formed on the said master surface or hot roller by applying formulations that are co-stabilized dispersions of heterogeneous, rigid rod like particles in a common solvent. In yet another embodiment, such heterogeneous networks are formed by contacting the receptor surface with more than one such master surface or hot roller.
    Type: Application
    Filed: January 23, 2019
    Publication date: February 11, 2021
    Inventors: Ramesh SIVARAJAN, Melissa J. RICCI, Colleen E. TREACY, Viktor VEJINS
  • Patent number: 10854243
    Abstract: Under one aspect, a covered nanotube switch includes: (a) a nanotube element including an unaligned plurality of nanotubes, the nanotube element having a top surface, a bottom surface, and side surfaces; (b) first and second terminals in contact with the nanotube element, wherein the first terminal is disposed on and substantially covers the entire top surface of the nanotube element, and wherein the second terminal contacts at least a portion of the bottom surface of the nanotube element; and (c) control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube element can switch between a plurality of electronic states in response to a corresponding plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube element provides an electrical pathway of different resistance between the first and second terminals.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: December 1, 2020
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, X. M. Henry Huang, Thomas Rueckes, Ramesh A. Sivarajan
  • Patent number: 10826078
    Abstract: A bipolar plate for fuel cells includes a flow plate having a first surface for the introduction of hydrogen fuel gas and water vapor and a second surface for the introduction of an oxygen containing gas, wherein at least a portion of the first and/or second surface comprises a nanostructured carbon material (NCM) coating deposited thereon, said coating having a thickness of 1 nm to 5 ?m.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: November 3, 2020
    Inventor: Ramesh Sivarajan
  • Patent number: 10789318
    Abstract: A ‘bi-directional search and match’ system, and apparatus, or match engine, is presented along with a detailed process or algorithm for execution of the same. In this construct, a relational database, supported by appropriate software modules for other functions receives search queries from users and converts them into numerical codes that are automatically and continuously matched against the search criteria provided by other users. The match engine continues with the match process at a pre-set time interval and automatically alerts the concerned users every time a match is found or as requested by the user. A user is enabled to initiate a range of follow-up actions when at least one matching criteria is met.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: September 29, 2020
    Inventor: Ramesh Sivarajan
  • Publication number: 20200262701
    Abstract: The present disclosure provides scalable nanotube fabrics and methods for controlling or otherwise adjusting the nanotube length distribution of a nanotube application solution in order to realize scalable nanotube fabrics. In one aspect of the present disclosure, one or more filtering operations are used to remove relatively long nanotube elements from a nanotube solution until nanotube length distribution of the nanotube solution conforms to a preselected or desired nanotube length distribution profile. In another aspect of the present disclosure, a sono-chemical cutting process is used to break up relatively long nanotube elements within a nanotube application solution into relatively short nanotube elements to realize a pre-selected or desired nanotube length distribution profile.
    Type: Application
    Filed: May 5, 2020
    Publication date: August 20, 2020
    Inventors: Rahul SEN, Billy SMITH, J. Thomas KOCAB, Ramesh SIVARAJAN, Peter SITES, Thomas RUECKES, David A. ROBERTS
  • Publication number: 20200161304
    Abstract: Under one aspect, a non-volatile nanotube diode device includes first and second terminals; a semiconductor element including a cathode and an anode, and capable of forming a conductive pathway between the cathode and anode in response to electrical stimulus applied to the first conductive terminal; and a nanotube switching element including a nanotube fabric article in electrical communication with the semiconductive element, the nanotube fabric article disposed between and capable of forming a conductive pathway between the semiconductor element and the second terminal, wherein electrical stimuli on the first and second terminals causes a plurality of logic states.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Applicant: Nantero, Inc.
    Inventors: Claude L. BERTIN, Thomas RUECKES, X.M. Henry HUANG, Ramesh SIVARAJAN, Eliodor G. Ghenciu, Steven L. KONSEK, Mitchell MEINHOLD
  • Patent number: 10654718
    Abstract: The present disclosure provides scalable nanotube fabrics and methods for controlling or otherwise adjusting the nanotube length distribution of a nanotube application solution in order to realize scalable nanotube fabrics. In one aspect of the present disclosure, one or more filtering operations are used to remove relatively long nanotube elements from a nanotube solution until nanotube length distribution of the nanotube solution conforms to a preselected or desired nanotube length distribution profile. In another aspect of the present disclosure, a sono-chemical cutting process is used to break up relatively long nanotube elements within a nanotube application solution into relatively short nanotube elements to realize a pre-selected or desired nanotube length distribution profile.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: May 19, 2020
    Assignee: Nantero, Inc.
    Inventors: Rahul Sen, Billy Smith, J. Thomas Kocab, Ramesh Sivarajan, Peter Sites, Thomas Rueckes, David A. Roberts
  • Publication number: 20200142934
    Abstract: A ‘bi-directional search and match’ system, and apparatus, or match engine, is presented along with a detailed process or algorithm for execution of the same. In this construct, a relational database, supported by appropriate software modules for other functions receives search queries from users and converts them into numerical codes that are automatically and continuously matched against the search criteria provided by other users. The match engine continues with the match process at a pre-set time interval and automatically alerts the concerned users every time a match is found or as requested by the user. A user is enabled to initiate a range of follow-up actions when at least one matching criteria is met.
    Type: Application
    Filed: November 30, 2018
    Publication date: May 7, 2020
    Inventor: Ramesh Sivarajan
  • Patent number: 10546859
    Abstract: Under one aspect, a non-volatile nanotube diode device includes first and second terminals; a semiconductor element including a cathode and an anode, and capable of forming a conductive pathway between the cathode and anode in response to electrical stimulus applied to the first conductive terminal; and a nanotube switching element including a nanotube fabric article in electrical communication with the semiconductive element, the nanotube fabric article disposed between and capable of forming a conductive pathway between the semiconductor element and the second terminal, wherein electrical stimuli on the first and second terminals causes a plurality of logic states.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: January 28, 2020
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold
  • Publication number: 20190325920
    Abstract: Under one aspect, a covered nanotube switch includes: (a) a nanotube element including an unaligned plurality of nanotubes, the nanotube element having a top surface, a bottom surface, and side surfaces; (b) first and second terminals in contact with the nanotube element, wherein the first terminal is disposed on and substantially covers the entire top surface of the nanotube element, and wherein the second terminal contacts at least a portion of the bottom surface of the nanotube element; and (c) control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube element can switch between a plurality of electronic states in response to a corresponding plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube element provides an electrical pathway of different resistance between the first and second terminals.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Claude L. Bertin, X.M. Henry Huang, Thomas Rueckes, Ramesh A. Sivarajan
  • Publication number: 20190322818
    Abstract: A method for preparing a “preblend” of nanostructured carbon, such as nanotubes, fullerenes, or graphene, and a particulate solid, such as polymer beads, carbon black, graphitic particles or glassy carbon involving wet-mixing and followed by optional drying to remove the liquid medium. The preblend may be in the form of a core-shell powder material with the nanostructured carbon as the shell on the particulate solid core. The preblend may provide particularly improved dispersion of single-walled nanotubes in ethylene-?-olefin elastomer compositions, resulting in improved reinforcement from the nanotubes. The improved elastomer compositions may show simultaneous improvement in both modulus and in elongation at break. The elastomer compositions may be formed into useful rubber articles.
    Type: Application
    Filed: June 4, 2019
    Publication date: October 24, 2019
    Inventors: Donald James Burlett, Henning Richter, Ramesh Sivarajan, Viktor Vejins
  • Patent number: 10339982
    Abstract: Under one aspect, a covered nanotube switch includes: (a) a nanotube element including an unaligned plurality of nanotubes, the nanotube element having a top surface, a bottom surface, and side surfaces; (b) first and second terminals in contact with the nanotube element, wherein the first terminal is disposed on and substantially covers the entire top surface of the nanotube element, and wherein the second terminal contacts at least a portion of the bottom surface of the nanotube element; and (c) control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube element can switch between a plurality of electronic states in response to a corresponding plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube element provides an electrical pathway of different resistance between the first and second terminals.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: July 2, 2019
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, X. M. Henry Huang, Thomas Rueckes, Ramesh Sivarajan
  • Patent number: 10308773
    Abstract: A method for preparing a “preblend” of nanostructured carbon, such as nanotubes, fullerenes, or graphene, and a particulate solid, such as polymer beads, carbon black, graphitic particles or glassy carbon involving wet-mixing and followed by optional drying to remove the liquid medium. The preblend may be in the form of a core-shell powder material with the nanostructured carbon as the shell on the particulate solid core. The preblend may provide particularly improved dispersion of single-walled nanotubes in ethylene-?-olefin elastomer compositions, resulting in improved reinforcement from the nanotubes. The improved elastomer compositions may show simultaneous improvement in both modulus and in elongation at break. The elastomer compositions may be formed into useful rubber articles.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: June 4, 2019
    Assignee: Gates Corporation
    Inventors: Donald James Burlett, Henning Richter, Ramesh Sivarajan, Viktor Vejins
  • Publication number: 20190051651
    Abstract: Under one aspect, a non-volatile nanotube diode device includes first and second terminals; a semiconductor element including a cathode and an anode, and capable of forming a conductive pathway between the cathode and anode in response to electrical stimulus applied to the first conductive terminal; and a nanotube switching element including a nanotube fabric article in electrical communication with the semiconductive element, the nanotube fabric article disposed between and capable of forming a conductive pathway between the semiconductor element and the second terminal, wherein electrical stimuli on the first and second terminals causes a plurality of logic states.
    Type: Application
    Filed: October 8, 2018
    Publication date: February 14, 2019
    Applicant: Nantero, Inc.
    Inventors: Claude L. BERTIN, Thomas RUECKES, X.M. Henry HUANG, Ramesh SIVARAJAN, Eliodor G. Ghenciu, Steven L. KONSEK, Mitchell MEINHOLD
  • Patent number: 10169464
    Abstract: The concept of a bi-directional search and match system or simply a match engine system is presented along with the detailed method and an algorithm for execution of the same. In this construct, a relational database, supported by appropriate software modules for other functions receives search queries from users and 5 converts them into numerical codes that are automatically and continuously matched against the search criteria provided by other users. The match engine continues with the match process at a pre-set time interval and automatically alerts the concerned users every time a match is found or as requested by the user. A user is enabled to initiate a range of follow-up actions 10 when at least one matching criteria is met.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: January 1, 2019
    Inventor: Ramesh Sivarajan
  • Patent number: 10096601
    Abstract: Under one aspect, a non-volatile nanotube diode device includes first and second terminals; a semiconductor element including a cathode and an anode, and capable of forming a conductive pathway between the cathode and anode in response to electrical stimulus applied to the first conductive terminal; and a nanotube switching element including a nanotube fabric article in electrical communication with the semiconductive element, the nanotube fabric article disposed between and capable of forming a conductive pathway between the semiconductor element and the second terminal, wherein electrical stimuli on the first and second terminals causes a plurality of logic states.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: October 9, 2018
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold