Patents by Inventor Ramez Khoury

Ramez Khoury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11519949
    Abstract: The present disclosure relates to a measurement system for testing a device under test over-the-air. The measurement system comprises a signal generation and/or analysis equipment, several antennas, several reflectors and a test location for the device under test. The antennas are connected with the signal generation and/or analysis equipment in a signal-transmitting manner Each of the antennas is configured to transmit and/or receive an electromagnetic signal so that a beam path is provided between the respective antenna and the test location. The electromagnetic signal is reflected by one of the reflectors so that the electromagnetic signal corresponds to a planar wave, thereby providing indirect far field conditions for testing. A first reflector of the several reflectors is orientated at a first azimuth angle and at a first elevation angle with respect to a center of the test location.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: December 6, 2022
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Vincent Abadie, Ramez Khoury, Corbett Rowell, Jose Fortes
  • Publication number: 20210148958
    Abstract: The present disclosure relates to a measurement system for testing a device under test over-the-air. The measurement system comprises a signal generation and/or analysis equipment, several antennas, several reflectors and a test location for the device under test. The antennas are connected with the signal generation and/or analysis equipment in a signal-transmitting manner Each of the antennas is configured to transmit and/or receive an electromagnetic signal so that a beam path is provided between the respective antenna and the test location. The electromagnetic signal is reflected by one of the reflectors so that the electromagnetic signal corresponds to a planar wave, thereby providing indirect far field conditions for testing. A first reflector of the several reflectors is orientated at a first azimuth angle and at a first elevation angle with respect to a center of the test location.
    Type: Application
    Filed: June 26, 2020
    Publication date: May 20, 2021
    Applicant: Rohde & Schwarz GmbH & Co. KG
    Inventors: Vincent Abadie, Ramez Khoury, Corbett Rowell, Jose Fortes
  • Patent number: 10256930
    Abstract: A testing method for testing mobile communication devices comprises measuring a three-dimensional antenna pattern of an active phased antenna array (AAS) of the mobile communication device, with the AAS being maintained at a specific beamforming alignment during the measurement. A predefined base fading profile is calibrated with the measured three-dimensional antenna pattern to obtain an optimized fading profile adapted to the specific beamforming alignment. A channel model for emulation of a base station is emulated on the basis of the optimized fading profile. The method further involves performing a receiver test on the mobile communication device using the emulated channel model. The testing method may in some embodiments be a radiated two-stage over-the-air (RTS-OTA) testing method.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: April 9, 2019
    Assignee: ROHDE & SCHWARZ GMBH & CO. KG
    Inventors: Bledar Karajani, Thorsten Hertel, Niels Petrovic, Ramez Khoury, Heinz Mellein, Johannes Koebele, Juan-Angel Anton, Vincent Abadie
  • Publication number: 20190058535
    Abstract: A testing method for testing mobile communication devices comprises measuring a three-dimensional antenna pattern of an active phased antenna array (AAS) of the mobile communication device, with the AAS being maintained at a specific beamforming alignment during the measurement. A predefined base fading profile is calibrated with the measured three-dimensional antenna pattern to obtain an optimized fading profile adapted to the specific beamforming alignment. A channel model for emulation of a base station is emulated on the basis of the optimized fading profile. The method further involves performing a receiver test on the mobile communication device using the emulated channel model. The testing method may in some embodiments be a radiated two-stage over-the-air (RTS-OTA) testing method.
    Type: Application
    Filed: August 21, 2017
    Publication date: February 21, 2019
    Inventors: Bledar Karajani, Thorsten Hertel, Niels Petrovic, Ramez Khoury, Heinz Mellein, Johannes Koebele, Juan-Angel Anton, Vincent Abadie