Patents by Inventor Ramin Abhari

Ramin Abhari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8536390
    Abstract: The present invention generally relates to a method for sequestering carbon dioxide. Biomass is converted into paraffinic hydrocarbons. The paraffinic hydrocarbons are steam cracked into olefins. The olefins are polymerized into non-biodegradable polyolefins.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: September 17, 2013
    Assignee: Syntroleum Corporation, A Delaware Corporation
    Inventor: Ramin Abhari
  • Publication number: 20130237727
    Abstract: A method for producing hydrocarbons from biomass is provided. The method involves supplying a feed stream; supplying a heated hydrocarbon solvent; combining the feed stream and the heated hydrocarbon solvent to produce a reactor feed, and hydrodeoxygenating the reactor feed to produce hydrocarbons; where the feed stream includes a synthetic polymer as well as biomass having fatty acids, glycerides, or combinations thereof.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: Syntroleum Corporation
    Inventors: Ramin Abhari, E. Gary Roth, Peter Z. Havlik, H. Lynn Tomlinson
  • Publication number: 20130228308
    Abstract: The present invention generally relates to a method for manufacturing phase change material (PCM) pellets. The method includes providing a melt composition, including paraffin and a polymer. The paraffin has a melt point of between about 10° C. and about 50° C., and more preferably between about 18° C. and about 28° C. In one embodiment, the melt composition includes various additives, such as a flame retardant. The method further includes forming the melt composition into PCM pellets. The method further may include the step of cooling the melt to increase the melt viscosity before pelletizing. Further, PCM compounds are provided having an organic PCM and a polymer. Methods are provided to convert the PCM compounds into various form-stable PCMs. A method of coating the PCMs is included to provide PCMs with substantially no paraffin seepage and with ignition resistance properties.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 5, 2013
    Applicant: Syntroleum Corporation
    Inventor: Ramin Abhari
  • Publication number: 20130150531
    Abstract: This invention relates to a composition comprising a functionalized C3 to C40 olefin polymer comprising at least 50 mol % of one or more C3 to C40 olefins, and where the olefin polymer, prior to functionalization, has: a Dot T-Peel of 1 Newton or more on Kraft paper; an Mw of 10,000 to 100,000; and a branching index (g?) of 0.98 or less measured at the Mz of the polymer when the polymer has an Mw of 10,000 to 60,000, or a branching index of 0.95 or less measured at the Mz of the polymer when the polymer has an Mw of 10,000 to 100,000; and where the C3 to C40 olefin polymer comprises at least 0.001 wt % of a functional group. This invention further relates to blends of such functionalized polymers with other polymers including non-functionalized C3 to C40 olefin polymers as described above.
    Type: Application
    Filed: June 15, 2012
    Publication date: June 13, 2013
    Inventors: Ramin Abhari, Charles Lewis Sims, Mun Fu Tse, Patrick Brant, Peijun Jiang, David Raymond Johnsrud
  • Publication number: 20130144093
    Abstract: The present invention generally relates to a method for sequestering carbon dioxide. Biomass is converted into paraffinic hydrocarbons. The paraffinic hydrocarbons are steam cracked into olefins. The olefins are polymerized into non-biodegradable polyolefins.
    Type: Application
    Filed: January 24, 2013
    Publication date: June 6, 2013
    Inventor: Ramin Abhari
  • Patent number: 8394900
    Abstract: The present invention generally relates to a method for sequestering carbon dioxide. Biomass is converted into paraffinic hydrocarbons. The paraffinic hydrocarbons are steam cracked into olefins. The olefins are polymerized into non-biodegradable polyolefins.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: March 12, 2013
    Assignee: Syntroleum Corporation
    Inventor: Ramin Abhari
  • Publication number: 20120251424
    Abstract: A process for producing a hydrocarbon from biomass. A feed stream containing biomass having fatty acids, mono-, di-, and/or triglycerides, and a phosphorus content of between about 1 wppm and about 1,000 wppm is provided. A heated hydrocarbon solvent and a hydrogen-rich gas are provided. The feed stream, the heated hydrocarbon solvent, and the hydrogen-rich gas are combined in the presence of a low activity hydrogenation catalyst. A spent low activity hydrogenation catalyst is recovered at the end of a run wherein the spent low activity hydrogenation catalyst contains at least 3% by weight phosphorus.
    Type: Application
    Filed: September 23, 2011
    Publication date: October 4, 2012
    Inventors: Peter Havlik, Ramin Abhari, Gary Roth, H. Lynn Tomlinson
  • Publication number: 20120238791
    Abstract: Paraffin compositions including mainly even carbon number paraffins, and a method for manufacturing the same, is disclosed herein. In one embodiment, the method involves contacting naturally occurring fatty acid/glycerides with hydrogen in a slurry bubble column reactor containing bimetallic catalysts with equivalent particle diameters from about 10 to about 400 micron. The even carbon number compositions are particularly useful as phase change material.
    Type: Application
    Filed: May 8, 2012
    Publication date: September 20, 2012
    Inventors: Ramin Abhari, H. Lynn Tomlinson, Vladimir Gruver
  • Patent number: 8231804
    Abstract: Paraffin compositions including mainly even carbon number paraffins, and a method for manufacturing the same, is disclosed herein. In one embodiment, the method involves contacting naturally occurring fatty acid/glycerides with hydrogen in a slurry bubble column reactor containing bimetallic catalysts with equivalent particle diameters from about 10 to about 400 micron. The even carbon number compositions are particularly useful as phase change material.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: July 31, 2012
    Assignee: Syntroleum Corporation
    Inventor: Ramin Abhari
  • Patent number: 8222345
    Abstract: This invention relates to a composition comprising a functionalized C3 to C40 olefin polymer comprising at least 50 mol % of one or more C3 to C40 olefins, and where the olefin polymer, prior to functionalization, has: a) a Dot T-Peel of 1 Newton or more on Kraft paper; b) an Mw of 10,000 to 100,000; and c) a branching index (g?) of 0.98 or less measured at the Mz of the polymer when the polymer has an Mw of 10,000 to 60,000, or a branching index (g?) of 0.95 or less measured at the Mz of the polymer when the polymer has an Mw of 10,000 to 100,000; and where the C3 to C40 olefin polymer comprises at least 0.001 weight % of an functional group, preferably maleic anhydride. This invention further relates to blends of such functionalized polymers with other polymers including non-functionalized C3 to C40 olefin polymers as described above.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: July 17, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ramin Abhari, Charles Lewis Sims, Mun Fu Tse, Patrick Brant, Peijun Jiang, David Raymond Johnsrud
  • Patent number: 8193289
    Abstract: Embodiments of the present invention relate to article comprising 1) a functionalized component, 2) tackifier, and 3) an olefin polymer comprising one or more C3 to C40 olefins, optionally one or more diolefins, and less than 5 mole % of ethylene having a Dot T-Peel of 1 Newton or more, a branching index (g?) of 0.95 or less measured at the Mz of the polymer; and an Mw of 100,000 or less; where the functional component is selected from the group consisting of functionalized polymers, functionalized oligomers and beta nucleating agents; and where the Gardner color of the adhesive does not change by more than 7 Gardner units when the adhesive has been heat aged at 180° C. for 48 hours as compared to the Gardner color of the unaged composition.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: June 5, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ramin Abhari, Charles Lewis Sims, Kenneth Lewtas, Mun Fu Tse, Patrick Brant, Peijun Jiang, Wai Yan Chow, Jean-Roch Schauder, Caiguo Gong, David Raymond Johnsrud, Jo Ann Marie Canich
  • Publication number: 20120095157
    Abstract: The present invention describes polymer comprising one or more C3 to C40 olefins and having a Mw of 100,000 or less and a Dot T-Peel of 1 Newton or more. The polymer may have a branching index (g?) of 0.95 or less measured at the Mz of the polymer, and a heat of fusion of 1 to 70 J/g. Also described are polymers of homopolypropylene or a copolymer of propylene and up to 5 mole % ethylene having: an isotactic run length of 1 to 30 as determined by Carbon 13 NMR and a percent of r dyad of greater than 20%, preferably from 20 to 70% as determined by Carbon 13 NMR. Also described are methods of making these and other polymers.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 19, 2012
    Inventors: Peijun Jiang, Armenag Hagop Dekmezian, Jo Ann Marie Canich, Charles Lewis Sims, Ramin Abhari, Cesar Alberto Garcia-Franco, David Raymond Johnsrud
  • Publication number: 20120049402
    Abstract: The present invention generally relates to a method for manufacturing phase change material (PCM) pellets. The method includes providing a melt composition including paraffin and a polymer. The paraffin has a melt point between about 10° C. and about 50° C., and more preferably between about 18° C. and about 28° C. In one embodiment, the melt composition includes various additives, such as a flame retardant. The method further includes forming the melt composition into PCM pellets. The method further may include the step of cooling the melt to increase the melt viscosity before pelletizing.
    Type: Application
    Filed: August 31, 2011
    Publication date: March 1, 2012
    Inventor: Ramin Abhari
  • Patent number: 8088867
    Abstract: The invention relates to a polymer blend prepared by the process of combining under polymerization conditions: (A) a first catalyst capable of producing a first crystalline polymer having an Mw of 100,000 or less, (B) a second catalyst capable of preparing a second amorphous polymer having an Mw of 100,000 or less and differing in chemical or physical properties from the first polymer under equivalent polymerization conditions, (C) a cocatalyst, activator, scavenger, or combination thereof, and (D) one or more olefins; wherein the polymer blend is formed in-situ, comprises crystalline polymer segments and amorphous polymer segments, and has an Mw of 100,000 or less.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: January 3, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peijun Jiang, Armenag Hagop Dekmezian, Jo Ann Marie Canich, Charles Lewis Sims, Ramin Abhari, Cesar Alberto Garcia-Franco, David Raymond Johnsrud
  • Publication number: 20110319683
    Abstract: The present invention generally relates to a method for producing a naphtha product from a renewable feedstock. The method includes hydrotreating the renewable feedstock to produce a hydrotreating unit heavy fraction that includes n-paraffins, and hydrocracking the hydrotreating unit heavy fraction to produce a hydrocracking unit product that includes the naphtha product. The method also includes separating the naphtha fraction and optionally recycling the hydrocracking unit heavy fraction through the hydrocracking unit. The present invention also relates to a biorenewable naphtha product suitable for use as feed stock for steam crackers and catalytic reforming units, and for use as fuel, or fuel blend stock.
    Type: Application
    Filed: August 2, 2011
    Publication date: December 29, 2011
    Inventors: Ramin Abhari, H. Lynn Tomlinson, Gary Roth
  • Publication number: 20110308142
    Abstract: The present invention generally relates to a method for producing a naphtha product from a renewable feedstock. The method includes hydrotreating the renewable feedstock to produce a hydrotreating unit heavy fraction that includes n-paraffins, and hydrocracking the hydrotreating unit heavy fraction to produce a hydrocracking unit product that includes the naphtha product. The method also includes separating the naphtha fraction and optionally recycling the hydrocracking unit heavy fraction through the hydrocracking unit. The present invention also relates to a biorenewable naphtha product suitable for use as feed stock for steam crackers and catalytic reforming units, and for use as fuel, or fuel blend stock.
    Type: Application
    Filed: August 3, 2011
    Publication date: December 22, 2011
    Inventors: Ramin Abhari, H. Lynn Tomlinson, Gary Roth
  • Patent number: 8071687
    Abstract: This invention relates to an adhesive comprising a polymer composition comprising at least 50 mol % of one or more C3 to C40 olefins where the polymer composition has (a) a Dot T-Peel of 1 Newton or more on Kraft paper; (b) an Mw of at least 7000 to 80,000; (c) a branching index (g?) of from 0.4 to 0.90 measured at the Mz of the polymer composition; (d) a heat of fusion of 1 to 70 J/g; and (e) a heptane insoluble fraction of 70 weight % or less, based upon the weight of the polymer composition, where the heptane insoluble fraction has branching index g? of 0.9 or less as measured at the Mz of the polymer composition.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: December 6, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peijun Jiang, Armenag Hagop Dekmezian, Jo Ann Marie Canich, Charles Lewis Sims, Ramin Abhari, Cesar Alberto Garcia-Franco, David Raymond Johnsrud
  • Patent number: 8058484
    Abstract: The present invention relates to a process for converting byproducts of the manufacture of biodiesel into industrially useful oxygenated products of greater commercial value. The process includes a trickle bed reactor in which a glycerol-rich feedstock is reacted with hydrogen in the presence of a nickel-tungsten catalyst under typical refining condition of high temperature and pressure, yielding propane synfuel or propanediols.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: November 15, 2011
    Assignee: Syntroleum Corporation
    Inventor: Ramin Abhari
  • Patent number: 8026401
    Abstract: A process for producing a hydrocarbon from biomass. A feed stream having free fatty acids, fatty acid esters or combinations thereof is provided. The feed stream is heated in the presence of a first catalyst to produce a partially hydrodeoxygenated stream. The partially hydrodeoxygenated stream is heated in the presence of a second catalyst to produce an effluent stream containing the hydrocarbon.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: September 27, 2011
    Assignee: Syntroleum Corporation
    Inventors: Ramin Abhari, Peter Havlik
  • Publication number: 20110230632
    Abstract: The present invention generally relates to a method for sequestering carbon dioxide. Biomass is converted into paraffinic hydrocarbons. The paraffinic hydrocarbons are steam cracked into olefins. The olefins are polymerized into non-biodegradable polyolefins.
    Type: Application
    Filed: March 18, 2010
    Publication date: September 22, 2011
    Inventor: Ramin Abhari