Patents by Inventor Ramin Khoini-Poorfard

Ramin Khoini-Poorfard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110244820
    Abstract: An integrated wideband receiver includes first and second signal processing paths and a controller. The first signal processing path has an input, and an output for providing a first processed signal, and comprises a first tracking bandpass filter having a first integrated inductor. The second signal processing path has an input, and an output for providing a second processed signal, and comprises a second tracking bandpass filter having a second integrated inductor. The controller is for enabling one of the first and second signal processing paths corresponding to a selected channel of a radio frequency (RF) input signal to provide an output signal. The controller, the first integrated inductor, and said second integrated inductor are formed on a single integrated circuit chip.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Inventors: Ramin Khoini-Poorfard, Alessandro Piovaccari, Aslamali A. Rafi, Mustafa H. Koroglu, David S. Trager, Abdulkerim L. Coban
  • Publication number: 20110235758
    Abstract: A receiver circuit includes an analog front-end and a digital processing unit. The analog front-end includes an input for receiving a radio frequency (RF) signal, a first control input for receiving a gain adjustment signal, a second control input for receiving a timing signal, and a signal output for providing a digital intermediate frequency (IF) signal. The analog front-end updates gains of a plurality of gain stages according to the gain adjustment signal and in synchronism with the timing signal. The digital processing unit is configured to produce at least one output signal derived from the digital IF signal. The digital processing unit includes a timing recovery circuit configured to generate the timing signal based on the digital IF signal to control timing of the updating gains of each of the plurality of adjustable gain stages.
    Type: Application
    Filed: May 28, 2010
    Publication date: September 29, 2011
    Applicant: SILICON LABORATORIES, INC.
    Inventors: Ramin Khoini-Poorfard, Alan F. Hendrickson, Alessandro Piovaccari, David S. Trager, Aslamali A. Rafi, Abdulkerim L. Coban, David Le Goff
  • Publication number: 20110215848
    Abstract: A frequency synthesizer includes a controlled oscillator configured to extend a temperature range and phase noise of the synthesizer without compromising the frequency coverage of the synthesizer. The frequency synthesizer also includes bias generation circuitry that sets a bias current of a charge pump to reduce bandwidth variations of the synthesizer. The frequency synthesizer further includes switching circuitry to dynamically turn a charge pump on and off to reduce effects of current leakage in the charge pump.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 8, 2011
    Applicant: Silicon Laboratories Inc.
    Inventors: Mustafa H. Koroglu, Sherry X. Wu, Ramin Khoini-Poorfard, Alessandro Piovaccari
  • Publication number: 20110076977
    Abstract: A signal processor for a radio frequency (RF) receiver includes a plurality of distributed signal processing elements, in which a first one receives an input signal and a last one provides an output signal, and a plurality of gain elements interspersed between pairs of said plurality of distributed signal processing elements. The signal processor also includes a like plurality of peak detectors coupled to outputs of corresponding ones of said plurality of gain elements, and an automatic gain controller having inputs coupled to outputs of each of the peak detectors, and outputs coupled to each of the plurality of gain elements. The automatic gain controller independently controls each of the plurality of gain elements to form a like plurality of independent automatic gain control (AGC) loops.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: Silicon Laboratories, Inc.
    Inventors: Abdulkerim L. Coban, Alessandro Piovaccari, Ramin Khoini-Poorfard, James T. Kao
  • Patent number: 7904040
    Abstract: Receiver architectures and associated methods are disclosed that provide initial analog coarse tuning of desired channels within a received signal spectrum, such as a set-top box signal spectrum for satellite communications. These architectures provide significant advantages over prior direct down-conversion (DDC) architectures and low intermediate-frequency (IF) architectures, particularly where two tuners are desired on the same integrated circuit. Rather than using a low-IF frequency or directly converting the desired channel frequency to DC, initial coarse tuning provided by analog coarse tuning circuitry allows for a conversion to a frequency range around DC. This coarse tuning circuitry can be implemented, for example, using a large-step local oscillator (LO) that provides a coarse tune analog mixing signal.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: March 8, 2011
    Assignee: Silicon Laboratories, Inc.
    Inventors: Ramin Khoini-Poorfard, Andrew W. Krone
  • Publication number: 20100328546
    Abstract: In one embodiment, a set of tracking filters to be coupled between an amplifier and a mixer is provided. The tracking filters may be differently configured depending on band of operation. For example, a first set of the filters can be configured to maintain a substantially constant Q value across their operating bandwidth while a second set of the filters can be configured to maintain a substantially constant bandwidth across their operating bandwidth.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Inventors: Aslamali A. Rafi, Chunyu Xin, Ruifeng Sun, Abhishek Kammula, Ramin Khoini-Poorfard, Alessandro Piovaccari, Peter J. Vancorenland
  • Publication number: 20100130158
    Abstract: A receiver (400) includes a tracking bandpass filter (420) and a signal processing circuit (430-480). The tracking bandpass filter (420) has a first input for receiving a radio frequency (RF) signal, and an output, and includes a first portion (731) on a semiconductor die (730), and at least one inductor (721). The at least one inductor (721) is operatively coupled to the first portion of the tracking bandpass filter (420). The signal processing circuit (430-480) has an input coupled to the output of the tracking bandpass filter (420), and an output for providing a processed signal. The semiconductor die (730) and the at least one inductor (721) are integrated into a single multi-chip module (MCM) (710).
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Applicant: SILICON LABORATORIES, INC.
    Inventors: Ramin Khoini-Poorfard, Alessandro Piovaccari, Aslamali A. Rafi, Mustafa H. Koroglu, David S. Trager
  • Publication number: 20100130153
    Abstract: A receiver (100) includes a first element (110) with a signal input, a control input, a signal output, and gain steps of a first magnitude, a signal processing circuit (120-168) with a signal input coupled to the first element, and a signal output, a second element (180) that has a signal input coupled to signal processing circuit, a control input, a signal output, and gain steps of a second magnitude smaller than the first magnitude, and a controller (180) that has a control output coupled to the first element (110), a control output coupled to the second element (180), and that adjusts receiver (100) gain by changing the first element (110) gain by a first magnitude, changing the second element (180) gain by substantially an inverse first magnitude, and subsequently changing the gain of the second element (180) by steps of the second magnitude to achieve a desired gain.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Applicant: SILICON LABORATORIES, INC.
    Inventors: Ramin Khoini-Poorfard, Alessandro Piovaccari, David S. Trager
  • Publication number: 20100130155
    Abstract: A receiver (400) includes a tracking bandpass filter (420), a tunable lowpass filter (434), a local oscillator (442), and a mixer (444). The tracking bandpass filter (420) has an input for receiving a radio frequency (RF) input signal, and an output. The tunable lowpass filter (434) has an input coupled to the output of the tracking bandpass filter (420), and an output. The local oscillator (422) has a first output for providing a local oscillator signal, which is characterized as being a square wave signal at the desired intermediate frequency (IF). The mixer (444) has a first input coupled to the output of the tunable lowpass filter (434), a second input coupled to the output of the local oscillator (442), and a first output for providing an IF signal at the desired IF. The tunable lowpass filter (434) is configured to substantially attenuate a third harmonic of the frequency of the local oscillator signal.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Applicant: SILICON LABORATORIES, INC.
    Inventors: Ramin Khoini-Poorfard, Alessandro Piovaccari, Aslamali A. Rafi
  • Patent number: 7623601
    Abstract: In one embodiment, the present invention includes a method for digitally detecting a first signal strength corresponding to a multi-channel spectrum of an incoming radio frequency (RF) spectrum and digitally detecting a second signal strength corresponding to a selected channel of the incoming RF spectrum. Based on these values, one or more one gain stages of a receiver, such as a satellite television receiver for the incoming RF spectrum, may be controlled. Other embodiments are described and claimed.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: November 24, 2009
    Assignee: Silicon Laboratories Inc.
    Inventors: Ramin Khoini-Poorfard, David Trager
  • Patent number: 7599673
    Abstract: A technique includes receiving a signal spectrum that includes a plurality of channels within a first frequency range. The technique includes receiving a selection signal that identifies at least one desired channel to be tuned. The technique includes providing an oscillator that has a second frequency range that is substantially the same as the first frequency range and controlling the oscillators to generate one of a plurality of coarse-tune analog mixing signals. The signals substantially span across the second frequency range and each depends upon the location of the desired channel within the signal spectrum. The technique includes mixing the signal spectrum with the selected coarse-tune analog mixing signal to generate a coarsely tuned signal spectrum. The technique includes digitally processing the coarsely-tuned signal spectrum to fine tune the desired channel and to produce digital baseband signals for the desired channel.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: October 6, 2009
    Assignee: Silicon Laboratories, Inc.
    Inventors: Adrian Maxim, Ramin Khoini-Poorfard, James Kao
  • Patent number: 7580481
    Abstract: Timing correction is affected for mismatch between channels in an I/Q demodulator. The respective demodulated I-channel and Q-channel are correlated and integrated so generate a timing control signal that is applied to a variable delay element. The variable delay element inserts a variable time delay in an ADC clock signal that is applied to either the I-channel ADC or the Q-channel ADC.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: August 25, 2009
    Assignee: Silicon Laboratories Inc.
    Inventor: Ramin Khoini-Poorfard
  • Patent number: 7447491
    Abstract: Integrated multiple tuner architectures and associated methods are disclosed that utilize frequency isolated local oscillators (LO). These architectures utilize dividers and multipliers within the signal paths for the local oscillator mixing signals to reduce interference among the multiple local oscillators operating on a single integrated circuit. A multiple tuner direct-down-conversion (DDC) receiver and a multiple tuner intermediate frequency (IF) receiver are provided as example embodiments. And an example integrated multi-tuner satellite receiver is also described.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: November 4, 2008
    Assignee: Silicon Laboratories Inc.
    Inventor: Ramin Khoini-Poorfard
  • Publication number: 20080250460
    Abstract: Receiver architectures and associated methods are disclosed that provide initial analog coarse tuning of desired channels within a received signal spectrum, such as a set-top box signal spectrum for satellite communications. These architectures provide significant advantages over prior direct down-conversion (DDC) architectures and low intermediate-frequency (IF) architectures, particularly where two tuners are desired on the same integrated circuit. Rather than using a low-IF frequency or directly converting the desired channel frequency to DC, initial coarse tuning provided by analog coarse tuning circuitry allows for a conversion to a frequency range around DC. This coarse tuning circuitry can be implemented, for example, using a large-step local oscillator (LO) that provides a coarse tune analog mixing signal.
    Type: Application
    Filed: December 19, 2007
    Publication date: October 9, 2008
    Inventors: Ramin Khoini-Poorfard, Andrew W. Krone
  • Patent number: 7340230
    Abstract: Receiver architectures and associated methods are disclosed that provide initial analog coarse tuning of desired channels within a received signal spectrum, such as a set-top box signal spectrum for satellite communications. These architectures provide significant advantages over prior direct down-conversion (DDC) architectures and low intermediate-frequency (IF) architectures, particularly where two tuners are desired on the same integrated circuit. Rather than using a low-IF frequency or directly converting the desired channel frequency to DC, initial coarse tuning provided by analog coarse tuning circuitry allows for a conversion to a frequency range around DC. This coarse tuning circuitry can be implemented, for example, using a large-step local oscillator (LO) that provides a coarse tune analog mixing signal.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: March 4, 2008
    Assignee: Silicon Laboratories Inc.
    Inventors: Ramin Khoini-Poorfard, Andrew W. Krone
  • Publication number: 20070081615
    Abstract: In one embodiment, the present invention includes a method for digitally detecting a first signal strength corresponding to a multi-channel spectrum of an incoming radio frequency (RF) spectrum and digitally detecting a second signal strength corresponding to a selected channel of the incoming RF spectrum. Based on these values, one or more one gain stages of a receiver, such as a satellite television receiver for the incoming RF spectrum, may be controlled. Other embodiments are described and claimed.
    Type: Application
    Filed: October 11, 2005
    Publication date: April 12, 2007
    Inventors: Ramin Khoini-Poorfard, David Trager
  • Patent number: 7167694
    Abstract: Multi-tuner receiver architectures and associated methods are disclosed that provide initial analog coarse tuning of desired channels within a received signal spectrum, such as transponder channels within a set-top box signal spectrum for satellite communications. These multi-tuner satellite receiver architectures provide significant advantages over prior direct down-conversion (DDC) architectures and low intermediate-frequency (IF) architectures, particularly where two tuners are desired on the same integrated circuit. Rather than using a low-IF frequency or directly converting the desired channel frequency to DC, initial coarse tuning provided by analog coarse tuning circuitry allows for a conversion to a frequency range around DC. This coarse tuning circuitry can be implemented, for example, using a large-step local oscillator (LO) that provides a coarse tune analog mixing signal.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: January 23, 2007
    Assignee: Silicon Laboratories Inc.
    Inventors: Ramin Khoini-Poorfard, Andrew W. Krone
  • Publication number: 20060089114
    Abstract: A technique includes receiving a signal spectrum that includes a plurality of channels within a first frequency range. The technique includes receiving a selection signal that identifies at least one desired channel to be tuned. The technique includes providing an oscillator that has a second frequency range that is substantially the same as the first frequency range and controlling the oscillators to generate one of a plurality of coarse-tune analog mixing signals. The signals substantially span across the second frequency range and each depends upon the location of the desired channel within the signal spectrum. The technique includes mixing the signal spectrum with the selected coarse-tune analog mixing signal to generate a coarsely tuned signal spectrum. The technique includes digitally processing the coarsely-tuned signal spectrum to fine tune the desired channel and to produce digital baseband signals for the desired channel.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 27, 2006
    Inventors: Adrian Maxim, Ramin Khoini-Poorfard, James Kao
  • Publication number: 20050243949
    Abstract: Timing correction is effected for mismatch between channels in an I/Q demodulator. The respective demodulated I-channel and Q-channel are correlated and integrated so generate a timing control signal that is applied to a variable delay element. The variable delay element inserts a variable time delay in an ADC clock signal that is applied to either the I-channel ADC or the Q-channel ADC.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 3, 2005
    Inventor: Ramin Khoini-Poorfard
  • Patent number: 6909390
    Abstract: A digital-to-analog converter circuit for a subscriber line analog front end includes a differential amplifier, switch circuitry, and first and second current steering digital-to-analog converters (DAC), each DAC having a first and second output forming a differential DAC output. The switch circuitry couples the differential output of at most a selected one of the first and second DACs to a pair of switch nodes. When the differential output of the selected DAC is coupled to the pair of switch nodes, the differential output of the other DAC is shorted. A differential input of the differential amplifier is communicatively coupled to the pair of switch nodes. A differential output of the differential amplifier is coupled to drive a tip line and a ring line of a subscriber line. In various embodiments, the DACs, switch circuitry, and differential amplifier reside on the same semiconductor substrate.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: June 21, 2005
    Assignee: Silicon Laboratories, Inc.
    Inventors: Ramin Khoini-Poorfard, Douglas R. Frey