Patents by Inventor Randall W. Davis

Randall W. Davis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230416813
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: June 19, 2023
    Publication date: December 28, 2023
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech
  • Patent number: 11802276
    Abstract: Disclosed are methods for isolating polymerase complexes from a mixture of polymerase complex components. The polymerase complexes can comprise a nanopore to provide isolated nanopore sequencing complexes. The methods relate to the positive and negative isolation of the polymerase complexes and/or nanopore sequencing complexes. Also disclosed is a nucleic acid adaptor for isolating active polymerase complexes, polymerase complexes comprising the nucleic acid adaptor, and methods for isolating active polymerase complexes using the nucleic acid adaptor.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: October 31, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Helen Franklin, Cynthia Cech, Timothy Kellogg Craig, Aruna Ayer, Kirti Dhiman, Natalie B. Chechelski Johnston, Joshua N. Mabry, Arkadiusz Bibillo, Peter Crisalli, Randall W. Davis
  • Patent number: 11746337
    Abstract: Disclosed are methods for isolating polymerase complexes from a mixture of polymerase complex components. The polymerase complexes can comprise a nanopore to provide isolated nanopore sequencing complexes. The methods relate to the positive and negative isolation of the polymerase complexes and/or nanopore sequencing complexes. Also disclosed is a nucleic acid adaptor for isolating active polymerase complexes, polymerase complexes comprising the nucleic acid adaptor, and methods for isolating active polymerase complexes using the nucleic acid adaptor.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: September 5, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Helen Franklin, Cynthia Cech, Timothy Kellogg Craig, Aruna Ayer, Kirti Dhiman, Natalie B. Chechelski Johnston, Joshua N. Mabry, Arkadiusz Bibillo, Peter Crisalli, Randall W. Davis
  • Patent number: 11725236
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: August 15, 2023
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech
  • Patent number: 11667966
    Abstract: The present invention relates to a method of using nanopores to obtain sequence information of sample DNAs in ss test DNAs. The method comprises using speed bumps to stall the ss test DNAs in the nanopores at random positions of the ss test DNAs to obtain sequence information of each and every nucleotides of the sample DNAs, and to construct the whole sequences of the sample DNAs. The present invention also relates to identification and/or isolation of test DNAs having desired sequence(s) using nanopore detectors facilitated by speed bump.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: June 6, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. Davis, Roger J. A. Chen
  • Publication number: 20230074210
    Abstract: Sequencing adaptors and methods are provided for preparation of polynucleotides for sequencing. The sequencing adaptors contain a portion of a recognition sequence for a methyl-dependent endonuclease. Unwanted adaptor dimers that form during ligation of adaptors to target polynucleotides produce a complete restriction sequence and are cleaved by the endonuclease, followed by exonuclease digestion, thereby removing the dimers.
    Type: Application
    Filed: October 26, 2022
    Publication date: March 9, 2023
    Inventors: Arkadiusz Bibillo, Randall W. Davis
  • Patent number: 11525124
    Abstract: Disclosed are methods for isolating polymerase complexes from a mixture of polymerase complex components. The polymerase complexes can comprise a nanopore to provide isolated nanopore sequencing complexes. The methods relate to the positive and negative isolation of the polymerase complexes and/or nanopore sequencing complexes. Also disclosed is a nucleic acid adaptor for isolating active polymerase complexes, polymerase complexes comprising the nucleic acid adaptor, and methods for isolating active polymerase complexes using the nucleic acid adaptor.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: December 13, 2022
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Helen Franklin, Cynthia Cech, Timothy Kellogg Craig, Aruna Ayer, Kirti Dhiman, Natalie B. Chechelski Johnston, Joshua N. Mabry, Arkadiusz Bibillo, Peter Crisalli, Randall W. Davis
  • Patent number: 11519026
    Abstract: Sequencing adaptors and methods are provided for preparation of polynucleotides for sequencing. The sequencing adaptors contain a portion of a recognition sequence for a methyl-dependent endonuclease. Unwanted adaptor dimers that form during ligation of adaptors to target polynucleotides produce a complete restriction sequence and are cleaved by the endonuclease, followed by exonuclease digestion, thereby removing the dimers.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: December 6, 2022
    Assignee: Roche Sequencing Solutions, inc.
    Inventors: Arkadiusz Bibillo, Randall W. Davis
  • Patent number: 11499190
    Abstract: This disclosure provides chips, systems and methods for sequencing a nucleic acid sample. Tagged nucleotides are provided into a reaction chamber comprising a nanopore in a membrane. An individual tagged nucleotide of the tagged nucleotides can contain a tag coupled to a nucleotide, which tag is detectable with the aid of the nanopore. Next, an individual tagged nucleotide of the tagged nucleotides can be incorporated into a growing strand complementary to a single stranded nucleic acid molecule derived from the nucleic acid sample. With the aid of the nanopore, a tag associated with the individual tagged nucleotide can be detected upon incorporation of the individual tagged nucleotide. The tag can be detected with the aid of the nanopore when the tag is released from the nucleotide.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 15, 2022
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. Davis, Roger J. A. Chen, Arkadiusz Bibillo, Daniel Korenblum
  • Publication number: 20210324462
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 21, 2021
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH
  • Publication number: 20210207212
    Abstract: The present invention relates to a method of using nanopores to obtain sequence information of sample DNAs in ss test DNAs. The method comprises using speed bumps to stall the ss test DNAs in the nanopores at random positions of the ss test DNAs to obtain sequence information of each and every nucleotides of the sample DNAs, and to construct the whole sequences of the sample DNAs. The present invention also relates to identification and/or isolation of test DNAs having desired sequence(s) using nanopore detectors facilitated by speed bump.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 8, 2021
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. DAVIS, Roger J.A. CHEN
  • Patent number: 11021745
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: June 1, 2021
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Randall W. Davis, Edward Shian Liu, Eric Takeshi Harada, Anne Aguirre, Andrew Trans, James Pollard, Cynthia Cech
  • Patent number: 10920271
    Abstract: The present invention relates to a method of using nanopores to obtain sequence information of sample DNAs in ss test DNAs. The method comprises using speed bumps to stall the ss test DNAs in the nanopores at random positions of the ss test DNAs to obtain sequence information of each and every nucleotides of the sample DNAs, and to construct the whole sequences of the sample DNAs. The present invention also relates to identification and/or isolation of test DNAs having desired sequence(s) using nanopore detectors facilitated by speed bump.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: February 16, 2021
    Inventors: Randall W. Davis, Roger J. A. Chen
  • Publication number: 20200407786
    Abstract: This disclosure provides chips, systems and methods for sequencing a nucleic acid sample. Tagged nucleotides are provided into a reaction chamber comprising a nanopore in a membrane. An individual tagged nucleotide of the tagged nucleotides can contain a tag coupled to a nucleotide, which tag is detectable with the aid of the nanopore. Next, an individual tagged nucleotide of the tagged nucleotides can be incorporated into a growing strand complementary to a single stranded nucleic acid molecule derived from the nucleic acid sample. With the aid of the nanopore, a tag associated with the individual tagged nucleotide can be detected upon incorporation of the individual tagged nucleotide. The tag can be detected with the aid of the nanopore when the tag is released from the nucleotide.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 31, 2020
    Inventors: Randall W. Davis, Roger J.A. Chen, Arkadiusz Bibillo, Daniel Korenblum
  • Publication number: 20200277581
    Abstract: Disclosed are methods for isolating polymerase complexes from a mixture of polymerase complex components. The polymerase complexes can comprise a nanopore to provide isolated nanopore sequencing complexes. The methods relate to the positive and negative isolation of the polymerase complexes and/or nanopore sequencing complexes. Also disclosed is a nucleic acid adaptor for isolating active polymerase complexes, polymerase complexes comprising the nucleic acid adaptor, and methods for isolating active polymerase complexes using the nucleic acid adaptor.
    Type: Application
    Filed: May 11, 2020
    Publication date: September 3, 2020
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Helen FRANKLIN, Cynthia CECH, Timothy Kellogg CRAIG, Aruna AYER, Kirti DHIMAN, Natalie B. CHECHELSKI JOHNSTON, Joshua N. MABRY, Arkadiusz BIBILLO, Peter CRISALLI, Randall W. DAVIS
  • Publication number: 20200270589
    Abstract: Disclosed are methods for isolating polymerase complexes from a mixture of polymerase complex components. The polymerase complexes can comprise a nanopore to provide isolated nanopore sequencing complexes. The methods relate to the positive and negative isolation of the polymerase complexes and/or nanopore sequencing complexes. Also disclosed is a nucleic acid adaptor for isolating active polymerase complexes, polymerase complexes comprising the nucleic acid adaptor, and methods for isolating active polymerase complexes using the nucleic acid adaptor.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 27, 2020
    Applicant: ROCHE SEQUENCING SOLUTIONS, INC.
    Inventors: Helen FRANKLIN, Cynthia CECH, Timothy Kellogg CRAIG, Aruna AYER, Kirti DHIMAN, Natalie B. CHECHELSKI JOHNSTON, Joshua N. MABRY, Arkadiusz BIBILLO, Peter CRISALLI, Randall W. DAVIS
  • Publication number: 20190382833
    Abstract: This disclosure provides chips, systems and methods for sequencing a nucleic acid sample. Tagged nucleotides are provided into a reaction chamber comprising a nanopore in a membrane. An individual tagged nucleotide of the tagged nucleotides can contain a tag coupled to a nucleotide, which tag is detectable with the aid of the nanopore. Next, an individual tagged nucleotide of the tagged nucleotides can be incorporated into a growing strand complementary to a single stranded nucleic acid molecule derived from the nucleic acid sample. With the aid of the nanopore, a tag associated with the individual tagged nucleotide can be detected upon incorporation of the individual tagged nucleotide. The tag can be detected with the aid of the nanopore when the tag is released from the nucleotide.
    Type: Application
    Filed: December 20, 2017
    Publication date: December 19, 2019
    Inventors: Randall W. Davis, Roger J.A. Chen, Arkadiusz Bibillo, Daniel Korenblum
  • Patent number: 10400278
    Abstract: The present invention relates to a method of using nanopores to obtain sequence information of sample DNAs in ss test DNAs. The method comprises using speed bumps to stall the ss test DNAs in the nanopores at random positions of the ss test DNAs to obtain sequence information of each and every nucleotides of the sample DNAs, and to construct the whole sequences of the sample DNAs. The present invention also relates to identification and/or isolation of test DNAs having desired sequence(s) using nanopore detectors facilitated by speed bump.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: September 3, 2019
    Assignee: Genia Technologies, Inc.
    Inventors: Randall W Davis, Roger J. A. Chen
  • Publication number: 20190264275
    Abstract: The present invention relates to a method of using nanopores to obtain sequence information of sample DNAs in ss test DNAs. The method comprises using speed bumps to stall the ss test DNAs in the nanopores at random positions of the ss test DNAs to obtain sequence information of each and every nucleotides of the sample DNAs, and to construct the whole sequences of the sample DNAs. The present invention also relates to identification and/or isolation of test DNAs having desired sequence(s) using nanopore detectors facilitated by speed bump.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 29, 2019
    Applicant: GENIA TECHNOLOGIES, INC.
    Inventors: Randall W. DAVIS, Roger J.A. CHEN
  • Publication number: 20190185927
    Abstract: This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 20, 2019
    Applicant: Genia Technologies, Inc.
    Inventors: Randall W. DAVIS, Edward Shian LIU, Eric Takeshi HARADA, Anne AGUIRRE, Andrew TRANS, James POLLARD, Cynthia CECH