Patents by Inventor Randolph Carlton McGee

Randolph Carlton McGee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10858119
    Abstract: A fuel tank inerting system includes a primary catalytic reactor comprising an inlet, an outlet, a reactive flow path between the inlet and the outlet, and a catalyst on the reactive flow path. The catalytic reactor is arranged to receive fuel from the fuel tank and air from an air source that are mixed to form a combined flow, and to react the combined flow along the reactive flow path to generate an inert gas. The system also includes an input sensor that measures a property of the combined flow before it enters the primary catalytic reactor and an output sensor that measures the property of the combined flow after it exits the primary catalytic reactor.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: December 8, 2020
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Sean C. Emerson, Zissis A. Dardas, Randolph Carlton McGee, Eric Surawski
  • Publication number: 20200339426
    Abstract: A method and system for making enhanced activated carbon are disclosed. A first heated gas including oxygen flows through a fluidized bed including particles comprising activated carbon to form oxidized activated carbon particles. A second heated gas including nitrogen, ammonia or a combination thereof, flows through a fluidized bed including the oxidized activated carbon particles to form nitrogenated activated carbon particles. A third heated gas including hydrogen flows through a fluidized bed including the nitrogenated activated carbon particles to form the enhanced activated carbon particles.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 29, 2020
    Inventor: Randolph Carlton McGee
  • Publication number: 20200247680
    Abstract: A method for producing a metal boride powder includes producing a bonding gas stream from a first powder in a first fluidizing bed reactor, delivering the bonding gas stream to a second fluidized bed reactor through a conduit fluidly connecting the first and second fluidized bed reactors, fluidizing a second powder in the second fluidized bed reactor, mixing the second powder with the bonding gas stream such that a metal boride or boron-doped powder is formed.
    Type: Application
    Filed: February 5, 2019
    Publication date: August 6, 2020
    Inventor: Randolph Carlton McGee
  • Publication number: 20200180779
    Abstract: Fuel tank inerting systems for aircraft are provided. The systems include a fuel tank, a catalytic reactor arranged to receive a first reactant from a first reactant source and a second reactant from a second reactant source to generate an inert gas that is supplied to the fuel tank to fill an ullage space of the fuel tank, a condensing heat exchanger arranged between the catalytic reactor and the fuel tank and configured to at least one of cool and condense an output from the catalytic reactor to separate out the inert gas, and a controller configured to perform a light-off operation of the catalytic reactor by controlling a light-off parameter and, after light-off occurs, adjusting the light-off parameter to an operating level, wherein at least one light-off parameter comprises an air-to-fuel ratio.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 11, 2020
    Inventors: Sean C. Emerson, Peter AT Cocks, Randolph Carlton McGee, Lance L. Smith, Eric Surawski
  • Publication number: 20200156149
    Abstract: A powder cleaning system can include a fluidized bed reactor configured to retain powder and fluidize the powder to remove adsorbate and/or other contaminants from the powder, at least one inlet line, and one or more gas sources configured to be in selective fluid communication with the fluidized bed reactor via the at least one inlet line to selectively provide an inlet flow having one or more gases to the fluidized bed reactor to fluidize the powder with the one or more gases within the fluidized bed reactor. The system can include at least one outlet line in fluid communication with the fluidized bed reactor and configured to allow removal of outlet flow which comprises the adsorbate and/or other contaminants from the fluidized bed reactor.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 21, 2020
    Inventors: Randolph Carlton Mcgee, Ying She
  • Publication number: 20190389593
    Abstract: Fuel tank inerting systems are provided. The systems include a fuel tank, an air source arranged to supply air into a reactive flow path, a catalytic reactor having a plurality of sub-reactors along the flow path, and a heat exchanger. The sub-reactors are arranged relative to the heat exchanger such that the flow path passes through at least a portion of the heat exchanger between two sub-reactors along the flow path. At least one fuel injector is arranged relative to at least one sub-reactor. The fuel injector is configured to inject fuel into the flow path at at least one of upstream of and in the respective at least one sub-reactor to generate a fuel-air mixture. A fuel tank ullage supply line fluidly connects the flow path to the fuel tank to supply an inert gas to a ullage of the fuel tank.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 26, 2019
    Inventors: Sean C. Emerson, Zissis A. Dardas, Robert R. Hebert, Randolph Carlton McGee, Allen Murray, Eric Surawski, Joseph Turney
  • Patent number: 10479522
    Abstract: An internal recycle reactor for catalytic inerting has a monolithic body having a motive fluid duct, a suction chamber, a mixing region, a reactor section, an outlet, and a recycle passage. The suction chamber includes a suction chamber inlet. The mixing region is configured to receive gaseous fluids from the motive fluid duct and the suction chamber inlet to produce a gaseous mixture. The reactor section includes a catalyst and is configured to receive the gaseous mixture from the mixing region. The outlet is configured to deliver an exhaust gas from the reactor section and the recycle passage is configured to deliver a portion of the exhaust gas to the suction chamber inlet.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: November 19, 2019
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Sean C. Emerson, Zissis A. Dardas, Randolph Carlton McGee, Eric Surawski
  • Publication number: 20190336952
    Abstract: A method is disclosed in which a gas of hydrogen and nitrogen, or hydrogen and ammonia, or hydrogen, nitrogen, and ammonia, is introduced to a fluidized bed. The gas flows through the fluidized bed, and titanium dioxide particles are introduced to the fluidized bed to form a fluid mixture of the particles and gas in the fluidized bed. The particles are reacted with the gas in the fluid mixture to form particles including titanium dioxide and nitrogen. The particles can be disposed along an air flow path in operative communication with a light source for air treatment.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 7, 2019
    Inventor: Randolph Carlton McGee
  • Publication number: 20190333715
    Abstract: A method of making an energy storage article having a metal nitride electrode is disclosed where metal nitride is made by nitriding particles of a metal or oxide of a metal selected from vanadium molybdenum, titanium, niobium, tungsten, or combinations including any of the foregoing by contacting the particles with a gas of nitrogen and hydrogen, or ammonia, in a fluidized bed reactor to form particles of metal nitride for the electrode.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 31, 2019
    Inventors: Randolph Carlton McGee, Ying She, Zissis A. Dardas
  • Publication number: 20190308740
    Abstract: A fuel tank inerting system includes a primary catalytic reactor comprising an inlet, an outlet, a reactive flow path between the inlet and the outlet, and a catalyst on the reactive flow path. The catalytic reactor is arranged to receive fuel from the fuel tank and air from an air source that are mixed to form a combined flow, and to react the combined flow along the reactive flow path to generate an inert gas. The system also includes an input sensor that measures a property of the combined flow before it enters the primary catalytic reactor and an output sensor that measures the property of the combined flow after it exits the primary catalytic reactor.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 10, 2019
    Inventors: Sean C. Emerson, Zissis A. Dardas, Randolph Carlton McGee, Eric Surawski
  • Publication number: 20190291886
    Abstract: An internal recycle reactor for catalytic inerting has a monolithic body having a motive fluid duct, a suction chamber, a mixing region, a reactor section, an outlet, and a recycle passage. The suction chamber includes a suction chamber inlet. The mixing region is configured to receive gaseous fluids from the motive fluid duct and the suction chamber inlet to produce a gaseous mixture. The reactor section includes a catalyst and is configured to receive the gaseous mixture from the mixing region. The outlet is configured to deliver an exhaust gas from the reactor section and the recycle passage is configured to deliver a portion of the exhaust gas to the suction chamber inlet.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Sean C. Emerson, Zissis A. Dardas, Randolph Carlton McGee, Eric Surawski
  • Publication number: 20190283895
    Abstract: A method for startup of a catalytic oxidation unit includes flowing air from an air source into the catalytic oxidation unit, recycling air from an outlet of the catalytic oxidation unit to an inlet of the catalytic oxidation unit through a recycle duct, and flowing a fuel from a fuel source into the catalytic oxidation to cause a catalytic reaction.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 19, 2019
    Inventors: Sean C. Emerson, Zissis A. Dardas, Robert R. Hebert, Allen Murray, Eric Surawski, Randolph Carlton McGee
  • Publication number: 20190160528
    Abstract: An example method of modifying a powder according to the present disclosure includes contacting a powder comprising particles with a nitrogen-containing gas and improved flowability of the powder. A method of providing a powder and a reactor are also disclosed.
    Type: Application
    Filed: November 27, 2017
    Publication date: May 30, 2019
    Inventors: Randolph Carlton McGee, Ying She, Aaron T. Nardi
  • Publication number: 20190039017
    Abstract: A moisture removal system for removing moisture from a gas is disclosed including a water absorption vessel with a microemulsion. The system also includes a gas-liquid phase separator in fluid communication with a water absorption vessel gas outlet, a gas outlet for conditioned air in fluid communication with a conditioned space, and a liquid outlet. An optional heat exchanger heats used microemulsion from the water absorption for water desorption in a water desorption vessel. An optional microemulsion regenerator provides thermal regeneration of microemulsion from the water desorption vessel for returning regenerated microemulsion to the water absorption vessel.
    Type: Application
    Filed: January 25, 2017
    Publication date: February 7, 2019
    Inventors: Randolph Carlton McGee, Parmesh Verma, Thomas D. Radcliff, Zissis A. Dardas
  • Publication number: 20180002815
    Abstract: A method of applying a metal comprising titanium to a substrate is disclosed. The method comprises nitriding the surface of metal powder particles comprising titanium by contacting the particles with a first gas comprising nitrogen in a fluidized bed reactor, and depositing the metal powder particles onto the substrate with cold spray deposition using a second gas.
    Type: Application
    Filed: January 20, 2016
    Publication date: January 4, 2018
    Inventors: Randolph Carlton McGee, Zissis A. Dardas, Ying She, Aaron T. Nardi, Michael A. Klecka
  • Publication number: 20170370661
    Abstract: A heat transfer system having a heat transfer fluid circulation loop of a first fluid is disclosed. A conduit is disposed in the fluid circulation loop with an inner surface in contact with the first fluid at a first pressure. An outer surface of the first conduit is in contact with a second fluid at a second pressure that is 69 kPa to 13771 kPa (10 psi to 2000 psi) higher than the first pressure. The conduit also includes a polyurea coating on its outer surface.
    Type: Application
    Filed: December 11, 2015
    Publication date: December 28, 2017
    Inventors: Randolph Carlton McGee, Parmesh Verma, Wayde R. Schmidt, James T. Beals