Patents by Inventor Randy D. Curry

Randy D. Curry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11844881
    Abstract: The present invention is directed to a composite material with a high dielectric constant. In certain embodiments, the composite material of the invention is biocompatible and is used in an implantable medical device, such as an implantable antenna, probe, sensor or electrode. In certain embodiments, the present invention comprises a biocompatible conductive or semi-conductive filler comprising filler particles dispersed within a biocompatible electrically insulating material. The filler particles may comprise an electrically insulating coating.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: December 19, 2023
    Assignee: The Curators of the University of Missouri
    Inventors: Kevin O'Connor, Randy D. Curry
  • Publication number: 20210213179
    Abstract: The present invention is directed to a composite material with a high dielectric constant. In certain embodiments, the composite material of the invention is biocompatible and is used in an implantable medical device, such as an implantable antenna, probe, sensor or electrode. In certain embodiments, the present invention comprises a biocompatible conductive or semi-conductive filler comprising filler particles dispersed within a biocompatible electrically insulating material. The filler particles may comprise an electrically insulating coating.
    Type: Application
    Filed: May 17, 2019
    Publication date: July 15, 2021
    Inventors: KEVIN O'CONNOR, RANDY D. CURRY
  • Patent number: 10790405
    Abstract: An electro-optically triggered power switch is disclosed utilizing a wide bandgap, high purity III-nitride semiconductor material such as BN, AlN, GaN, InN and their compounds. The device is electro-optically triggered using a laser diode operating at a wavelength of 10 to 50 nanometers off the material's bandgap, and at a power level of 10 to 100 times less than that required in a conventionally triggered device. The disclosed device may be configured as a high power RF MOSFET, IGBT, FET, or HEMT that can be electro-optically controlled using photons rather than an electrical signal. Electro-optic control lowers the power losses in the semiconductor device, decreases the turn-on time, and simplifies the drive signal requirements. It also allows the power devices to be operated from the millisecond to the sub-picosecond timeframe, thus allowing the power device to be operated at RF frequencies (i.e., kilohertz to terahertz range) and at high temperatures where the bandgap changes with temperature.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: September 29, 2020
    Assignee: The Curators of the University of Missouri
    Inventors: Heikki I. Helava, Randy D. Curry
  • Patent number: 10456198
    Abstract: Systems and methods for the controlled delivery of laser light to target tissue using an improved waveguide. A waveguide controls transmission of wave energy to a target based on direct contact with the target. The waveguide comprises a propagation medium, a cladding causing the electromagnetic wave to be internally reflected in the medium, and an interface formed in the cladding and configured for direct contact with the target. A portion of the laser light penetrates through the cladding at the interface and propagates into the target while a portion internally reflects within the propagation medium.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: October 29, 2019
    Assignee: The Curators of the University of Missouri
    Inventors: Paul James Douglas Whiteside, Benjamin Samuel Goldschmidt, John A. Viator, Randy D. Curry, Nicholas J. Golda
  • Publication number: 20190214520
    Abstract: An electro-optically triggered power switch is disclosed utilizing a wide bandgap, high purity III-nitride semiconductor material such as BN, AlN, GaN, InN and their compounds. The device is electro-optically triggered using a laser diode operating at a wavelength of 10 to 50 nanometers off the material's bandgap, and at a power level of 10 to 100 times less than that required in a conventionally triggered device. The disclosed device may be configured as a high power RF MOSFET, IGBT, FET, or HEMT that can be electro-optically controlled using photons rather than an electrical signal. Electro-optic control lowers the power losses in the semiconductor device, decreases the turn-on time, and simplifies the drive signal requirements. It also allows the power devices to be operated from the millisecond to the sub-picosecond timeframe, thus allowing the power device to be operated at RF frequencies (i.e., kilohertz to terahertz range) and at high temperatures where the bandgap changes with temperature.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Inventors: Heikki I. Helava, Randy D. Curry
  • Patent number: 9924586
    Abstract: This disclosure relates to methods and devices for generating electron dense air plasmas at atmospheric pressures. In particular, this disclosure relate to self-contained toroidal air plasmas. Methods and apparatuses have been developed for generating atmospheric toroidal air plasmas. The air plasmas are self-confining, can be projected, and do not require additional support equipment once formed.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: March 20, 2018
    Assignee: The Curators of the University of Missouri
    Inventor: Randy D. Curry
  • Patent number: 9728660
    Abstract: The present invention relates to a solid state switch that may be used as in optically-triggered switch in a variety of applications. In particular, the switch may allow for the reduction of gigawatt systems to approximately shoebox-size dimension. The optically-triggered switches may be included in laser triggered systems or antenna systems.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: August 8, 2017
    Assignee: The Curators of the University of Missouri
    Inventors: Randy D. Curry, Heikki Helava
  • Patent number: 9716202
    Abstract: The present invention relates to a solid-state optically activated switch that may be used as limiting switch in a variety of applications or as a high voltage switch. In particular, the switch may incorporate the photoconductive properties of a semiconductor to provide the limiting function in a linear mode. In one embodiment, a configuration of the switch allows for greater than 99.9999% off-state transmission and an on-state limiting of less than 0.0001% of the incident signal.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: July 25, 2017
    Assignee: The Curators of the University of Missouri
    Inventors: Randy D. Curry, Robert Druce, Nathaniel Kinsey, Heikki Helava
  • Publication number: 20170064803
    Abstract: This disclosure relates to methods and devices for generating electron dense air plasmas at atmospheric pressures. In particular, this disclosure relate to self-contained toroidal air plasmas. Methods and apparatuses have been developed for generating atmospheric toroidal air plasmas. The air plasmas are self-confining, can be projected, and do not require additional support equipment once formed.
    Type: Application
    Filed: May 5, 2016
    Publication date: March 2, 2017
    Applicant: The Curators of the University of Missouri
    Inventor: Randy D. Curry
  • Patent number: 9556321
    Abstract: The present invention relates to composite materials with a high dielectric constant and high dielectric strength and to methods of producing the composite materials. The composite materials have high dielectric constants at a range of high frequencies and possess robust mechanical properties and strengths, such that they may be machined to a variety of configurations. The composite materials also have high dielectric strengths for operation in high power and high energy density systems. In one embodiment, the composite material is composed of a trimodal distribution of ceramic particles, including barium titanate, barium strontium titanate (BST), or combinations thereof and a polymer binder.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: January 31, 2017
    Assignee: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Randy D. Curry, Kevin O'Connor
  • Publication number: 20160254108
    Abstract: This disclosure relates to methods and systems to reduce high voltage breakdown jitters in liquid dielectric switches. In particular, dielectric liquids have been produced that contain a suspension of nanoparticles and a surfactant to reduce the breakdown jitter. In one embodiment, the suspended nanoparticles are Barium Strontium Titanate (BST) nanoparticles.
    Type: Application
    Filed: November 24, 2014
    Publication date: September 1, 2016
    Inventors: Randy D. Curry, Christopher Yeckel, Daniel Crosby
  • Patent number: 9338874
    Abstract: This disclosure relates to methods and devices for generating electron dense air plasmas at atmospheric pressures. In particular, this disclosure relate to self-contained toroidal air plasmas. Methods and apparatuses have been developed for generating atmospheric toroidal air plasmas. The air plasmas are self-confining, can be projected, and do not require additional support equipment once formed.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: May 10, 2016
    Assignee: The Curators of the University of Missouri
    Inventor: Randy D. Curry
  • Publication number: 20150351841
    Abstract: Systems and methods for the controlled delivery of laser light to target tissue using an improved waveguide. A waveguide controls transmission of wave energy to a target based on direct contact with the target. The waveguide comprises a propagation medium, a cladding causing the electromagnetic wave to be internally reflected in the medium, and an interface formed in the cladding and configured for direct contact with the target. A portion of the laser light penetrates through the cladding at the interface and propagates into the target while a portion internally reflects within the propagation medium.
    Type: Application
    Filed: June 4, 2015
    Publication date: December 10, 2015
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Paul James Douglas Whiteside, Benjamin Samuel Goldschmidt, John A. Viator, Randy D. Curry, Nicholas J. Golda
  • Publication number: 20150221804
    Abstract: The present invention relates to a solid-state optically activated switch that may be used as limiting switch in a variety of applications or as a high voltage switch. In particular, the switch may incorporate the photoconductive properties of a semiconductor to provide the limiting function in a linear mode. In one embodiment, a configuration of the switch allows for greater than 99.9999% off-state transmission and an on-state limiting of less than 0.0001% of the incident signal.
    Type: Application
    Filed: August 13, 2013
    Publication date: August 6, 2015
    Inventors: Randy D. Curry, Robert Druce, Nathaniel Kinsey, Heikki Helava
  • Publication number: 20150187970
    Abstract: The present invention relates to a solid state switch that may be used as in optically-triggered switch in a variety of applications. In particular, the switch may allow for the reduction of gigawatt systems to approximately shoebox-size dimension. The optically-triggered switches may be included in laser triggered systems or antenna systems.
    Type: Application
    Filed: August 14, 2013
    Publication date: July 2, 2015
    Inventors: Randy D. Curry, Heikki Helava
  • Publication number: 20150047190
    Abstract: The present invention relates to composite materials with a high dielectric constant and high dielectric strength and to methods of producing the composite materials. The composite materials have high dielectric constants at a range of high frequencies and possess robust mechanical properties and strengths, such that they may be machined to a variety of configurations. The composite materials also have high dielectric strengths for operation in high power and high energy density systems. In one embodiment, the composite material is composed of a trimodal distribution of ceramic particles, including barium titanate, barium strontium titanate (BST), or combinations thereof and a polymer binder.
    Type: Application
    Filed: October 20, 2014
    Publication date: February 19, 2015
    Inventors: Randy D. Curry, Kevin O'Connor
  • Patent number: 8912460
    Abstract: This disclosure relates to methods and systems to reduce high voltage breakdown jitters in liquid dielectric switches. In particular, dielectric liquids have been produced that contain a suspension of nanoparticles and a surfactant to reduce the breakdown jitter. In one embodiment, the suspended nanoparticles are Barium Strontium Titanate (BST) nanoparticles.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: December 16, 2014
    Assignee: The Curators of the University of Missouri
    Inventors: Randy D. Curry, Christopher Yeckel, Daniel Crosby
  • Patent number: 8889776
    Abstract: The present invention relates to composite materials with a high dielectric constant and high dielectric strength and to methods of producing the composite materials. The composite materials have high dielectric constants at a range of high frequencies and possess robust mechanical properties and strengths, such that they may be machined to a variety of configurations. The composite materials also have high dielectric strengths for operation in high power and high energy density systems. In one embodiment, the composite material is composed of a trimodal distribution of ceramic particles, including barium titanate, barium strontium titanate (BST), or combinations thereof and a polymer binder.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 18, 2014
    Assignee: The Curators of the University of Missouri
    Inventors: Randy D. Curry, Kevin O'Connor
  • Publication number: 20130334537
    Abstract: An electro-optically triggered power switch is disclosed utilizing a wide bandgap, high purity III-nitride semiconductor material such as BN, AN, GaN, InN and their compounds. The device is electro-optically triggered using a laser diode operating at a wavelength of 10 to 50 nanometers off the material's bandgap, and at a power level of 10 to 100 times less than that required in a conventionally triggered device. The disclosed device may be configured as a high power RF MOSFET, IGBT, FET, or HEMT that can be electro-optically controlled using photons rather than an electrical signal. Electro-optic control lowers the power losses in the semiconductor device, decreases the turn-on time, and simplifies the drive signal requirements. It also allows the power devices to be operated from the millisecond to the sub-picosecond timeframe, thus allowing the power device to be operated at RF frequencies (i.e., kilohertz to terahertz range) and at high temperatures where the bandgap changes with temperature.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 19, 2013
    Applicants: The Curators of the University of Missouri, Helava Systems, Inc.
    Inventors: Heikki I. Helava, Randy D. Curry
  • Publication number: 20130062314
    Abstract: This disclosure relates to methods and systems to reduce high voltage breakdown jitters in liquid dielectric switches. In particular, dielectric liquids have been produced that contain a suspension of nanoparticles and a surfactant to reduce the breakdown jitter. In one embodiment, the suspended nanoparticles are Barium Strontium Titanate (BST) nanoparticles.
    Type: Application
    Filed: May 23, 2012
    Publication date: March 14, 2013
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Randy D. Curry, Christopher Yeckel, Daniel Crosby