Patents by Inventor Ranganathan Shashidhar

Ranganathan Shashidhar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9891187
    Abstract: Systems that can measure small changes in ion concentrations and method of manufacturing and using those systems. The system includes a substrate, a plurality of multi-walled carbon nanotubes, each multi-walled carbon nanotube from the plurality of multi-walled carbon nanotubes having two ends and a surface extending between the two ends, one of the two ends being disposed on and operatively attached to the substrate, the other of the two ends not being disposed on the substrate, a number of organic molecules; each organic molecule bound to one multi-walled carbon nanotube, each organic molecule also having an end group with affinity for a predetermined ion(s), and a substantially nonconducting polymer deposited on a portion of each multiwalled carbon nanotube, the portion substantially not including locations on each multiwalled carbon nanotube at which each organic molecule is chelated.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: February 13, 2018
    Assignee: POLESTAR TECHNOLOGIES, INC.
    Inventors: Ranganathan Shashidhar, Yufeng Ma, James A. Kane
  • Patent number: 9491378
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating, through a patterning component, regions, where an electromagnetic radiation source, from a number of electromagnetic radiation sources, illuminates the patterning component, each repetition performed with a different wavelength. A number of Global pixelated images are obtained. The number of global pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: November 8, 2016
    Assignee: Polestar Technologies, Inc.
    Inventors: James A. Kane, Ranganathan Shashidhar
  • Publication number: 20160178649
    Abstract: Biosensors and sensing methods that overcome the disadvantages, poor chemical, physical and long-term stability, hatch to batch variability and high cost sensor of these teachings for detecting and recognizing target molecules includes a capture and release component and a sensing component. The capture release component includes a structure having molecularly imprinted polymer nanoparticles disposed on the structure, the structure being configured to receive a target fluid having the target molecules, the target molecules being captured by one of a molecularly imprinted polymer or molecularly imprinted polymer nanoparticles, and a source of a release solvent configured to release the target molecules captured by the molecularly imprinted polymer nanoparticles, the release solvent and released target molecules constituting a release solution. The sensing component includes a sensor surface having a layer of molecular imprinted polymer disposed on the sensor surface; and a sensing circuit.
    Type: Application
    Filed: October 16, 2015
    Publication date: June 23, 2016
    Inventors: Ranganathan Shashidhar, Yufeng Ma, James A. Kane
  • Patent number: 9347908
    Abstract: A molecular recognition sensor system is provided incorporating a molecular imprinted nanosensor device.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: May 24, 2016
    Assignee: Polestar Technologies, Inc.
    Inventors: Xiulan Li, Ranganathan Shashidhar, Yufeng Ma
  • Patent number: 9310512
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process one or more detection outputs, the detection outputs obtained by illuminating regions with a electromagnetic radiation source from the number of electromagnetic radiation sources, each electromagnetic radiation source emitting at a different wavelength, the one or more detection outputs, after processing, constituting a vector of processed data, and the analysis subsystem being also configured to compare the vector of processed data to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 12, 2016
    Assignee: Polestar Technologies, Inc.
    Inventors: James A. Kane, Ranganathan Shashidhar, Timothy Bortz
  • Patent number: 9305237
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating regions with a electromagnetic radiation source from a number of electromagnetic radiation sources, each repetition performed with a different wavelength. The number of pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: April 5, 2016
    Assignee: Polestar Technologies, Inc.
    Inventors: James A. Kane, Ranganathan Shashidhar
  • Patent number: 9262692
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating regions with a electromagnetic radiation source from a number of electromagnetic radiation sources, each repetition performed with a different wavelength. The number of pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: February 16, 2016
    Assignee: Polestar Technologies, Inc.
    Inventors: James A. Kane, Ranganathan Shashidhar
  • Publication number: 20150288893
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating, through a patterning component, regions, where an electromagnetic radiation source, from a number of electromagnetic radiation sources, illuminates the patterning component, each repetition performed with a different wavelength. A number of Global pixelated images are obtained. The number of global pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 8, 2015
    Inventors: James A. Kane, Ranganathan Shashidhar
  • Publication number: 20140270342
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating regions with a electromagnetic radiation source from a number of electromagnetic radiation sources, each repetition performed with a different wavelength. The number of pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Application
    Filed: January 15, 2013
    Publication date: September 18, 2014
    Inventors: James A. Kane, Ranganathan Shashidhar
  • Patent number: 8628728
    Abstract: A non-invasive, calorimetric infection detector is provided, comprised of a substrate, and one or more indicator compositions disposed upon or incorporated therein. These indicator compositions exhibit a persistent change color when exposed to gaseous oxides of nitrogen and acids formed therefrom, providing a means of detecting NO production in a wound, which has been found to occur at a high level at the onset of infection in a wound. In addition, a bandage is provided, comprised of the detector, as well as a porous portion, and preferably a hydrophobic barrier layer to protect the detector from contamination by water and other fluids draining from the wound. The non-invasive, calorimetric infection detector, and bandage containing same, can be utilized to provide a convenient, easily utilized colorimetric means of detecting the onset of wound infection, thereby enabling caregivers to effectively and timely treat infections.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: January 14, 2014
    Assignee: Polestar Technologies, Inc.
    Inventors: James A Kane, Melissa Ricci, Ranganathan Shashidhar
  • Publication number: 20130114855
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating regions with a electromagnetic radiation source from a number of electromagnetic radiation sources, each repetition performed with a different wavelength. The number of pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 9, 2013
    Inventors: James A. Kane, Ranganathan Shashidhar
  • Publication number: 20130092547
    Abstract: A molecular recognition sensor system is provided incorporating a molecular imprinted nanosensor device.
    Type: Application
    Filed: November 5, 2012
    Publication date: April 18, 2013
    Applicant: POLESTAR TECHNOLOGIES, INC.
    Inventors: Xiulan Li, Ranganathan Shashidhar, Yufeng Ma
  • Patent number: 8415624
    Abstract: A method and system for detection and identification of concealed materials, is provided, wherein a dark image and two or more NIR sample images are taken at two or more key wavelengths or bands of wavelengths corresponding to peaks and/or valleys in the NIR spectra of known materials, and differential wavelength imaging processes are used to produce a differential wavelength image based on therein. The differential wavelength image is then analyzed/processed so as to detect any materials concealed on the target of interest, such as a human or piece of baggage, by calculation of pixel intensity values in the image and identification of distinctive pixel values. Then, via various methods, the distinctive pixel values of the detected materials are compared to a data set of known wavelengths related to known materials, such as explosives and other contraband. Correspondence thereof results in an accurate identification of the concealed material(s).
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: April 9, 2013
    Assignee: Polestar Technologies, Inc.
    Inventor: Ranganathan Shashidhar
  • Patent number: 8313633
    Abstract: A molecular recognition sensor system is provided incorporating a molecular imprinted nanosensor device formed by the process steps of: (a) fabricating using photolithography a pair of metallic electrodes separated by a microscale gap onto a first electrical insulation layer formed on a substrate; (b) applying a second electrical insulation layer on most of a top surface of said pairs of electrodes; (c) depositing additional metallic electrode material onto said electrode pairs using electrochemical deposition, thereby decreasing said microgap to a nano sized gap between said electrode pairs; (d) electrochemically polymerizing in said nanogap conductive monomers containing a target analyte, thereby forming a conducting polymer nanojunction in the gap between electrode pairs; and (e) immersing resultant sensor device in a solution which removes away the target analyte, and intermittently applying a voltage to the conducting polymer while it is immersed in said solution, thereby swelling and shrinking the co
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: November 20, 2012
    Assignee: Polestar Technologies, Inc.
    Inventors: Xiulan Li, Ranganathan Shashidhar, Yufeng Ma
  • Publication number: 20110024302
    Abstract: A molecular recognition sensor system is provided incorporating a molecular imprinted nanosensor device formed by the process steps of: (a) fabricating using photolithography a pair of metallic electrodes separated by a microscale gap onto a first electrical insulation layer formed on a substrate; (b) applying a second electrical insulation layer on most of a top surface of said pairs of electrodes; (c) depositing additional metallic electrode material onto said electrode pairs using electrochemical deposition, thereby decreasing said microgap to a nano sized gap between said electrode pairs; (d) electrochemically polymerizing in said nanogap conductive monomers containing a target analyte, thereby forming a conducting polymer nanojunction in the gap between electrode pairs; and (e) immersing resultant sensor device in a solution which removes away the target analyte, and intermittently applying a voltage to the conducting polymer while it is immersed in said solution, thereby swelling and shrinking the co
    Type: Application
    Filed: July 28, 2009
    Publication date: February 3, 2011
    Applicant: POLESTAR TECHNOLOGIES, INC.
    Inventors: Xiulan Li, Ranganathan Shashidhar, Yufeng Ma
  • Patent number: 7840360
    Abstract: A system and method for non-invasively inspecting one or more vessels capable of transmitting IR light containing liquid is provided, which uses a near-infrared (NIR) imaging device in combination with one or two NIR light sources, a diffuser plate, and an optical wavelength selecting means is provided for selecting one or more wavelength bands. In addition, the system may further comprise a computer processing means, a computer database containing known absorbance values, and a computer application, such that the system may compare the collected spectroscopic data to known spectroscopic data, and identify the liquid contained within the inspected vessel. The inspection method of the present invention measures a transmission or reflection image of one or more vessels being inspected at one or more narrow wavelength intervals in the NIR spectral range that corresponds to a peak absorbance wavelength of water, organic liquids, and explosive compositions.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: November 23, 2010
    Inventors: Ronald H. Micheels, Ranganathan Shashidhar, Karen K. Carpenter
  • Publication number: 20100278441
    Abstract: A method and system for detection and identification of concealed materials, is provided, wherein a dark image and two or more NIR sample images are taken at two or more key wavelengths or bands of wavelengths corresponding to peaks and/or valleys in the NIR spectra of known materials, and differential wavelength imaging processes are used to produce a a differential wavelength image based on therein. The differential wavelength image is then analyzed/processed so as to detect any materials concealed on the target of interest, such as a human or piece of baggage, by calculation of pixel intensity values in the image and identification of distinctive pixel values. Then, via various methods, the distinctive pixel values of the detected materials are compared to a data set of known wavelengths related to known materials, such as explosives and other contraband. Correspondence thereof results in an accurate identification of the concealed material(s).
    Type: Application
    Filed: February 25, 2010
    Publication date: November 4, 2010
    Applicant: Polestar Technologies, Inc.
    Inventor: Ranganathan Shashidhar
  • Publication number: 20100178203
    Abstract: A non-invasive, calorimetric infection detector is provided, comprised of a substrate, and one or more indicator compositions disposed upon or incorporated therein. These indicator compositions exhibit a persistent change color when exposed to gaseous oxides of nitrogen and acids formed therefrom, providing a means of detecting NO production in a wound, which has been found to occur at a high level at the onset of infection in a wound. In addition, a bandage is provided, comprised of the detector, as well as a porous portion, and preferably a hydrophobic barrier layer to protect the detector from contamination by water and other fluids draining from the wound. The non-invasive, calorimetric infection detector, and bandage containing same, can be utilized to provide a convenient, easily utilized colorimetric means of detecting the onset of wound infection, thereby enabling caregivers to effectively and timely treat infections.
    Type: Application
    Filed: January 15, 2009
    Publication date: July 15, 2010
    Applicant: POLESTAR TECHNOLOGIES, INC.
    Inventors: James A. Kane, Melissa Ricci, Ranganathan Shashidhar
  • Patent number: 7691439
    Abstract: A polymer film comprising at least two layers, wherein each layer comprises a compound comprising the formula: wherein R1 and R2 are independently selected organic groups. A method of making a polymer film comprising the steps of: providing a monomer solution comprising one or more monomers comprising the formula: wherein R1 and R2 are independently selected organic groups; dispensing the monomer solution onto a substrate; heating the monomer solution on the substrate to polymerize the monomer; and repeating the steps of providing a monomer solution, dispensing, and heating one or more times, wherein the spin-coating is performed on top of the prior spin-coated layer.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: April 6, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Brett Martin, Nikolay Nikolov, Ranganathan Shashidhar
  • Patent number: 7320813
    Abstract: A polymerization process is provided using a mixture of a solvent, a monomer, an oxidizing agent, and a moderator. The mixture is coated on a substrate and heated to initiate oxidative polymerization. At least one of three process conditions is used: the solvent having a boiling point in excess of about 120° C.; the total concentration of the monomer, the oxidizing agent, and the moderator being at least about 40% by weight; and the molar concentration of the moderator being greater than the molar concentration of the monomer.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: January 22, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Steve Pollack, Brett D. Martin, Ranganathan Shashidhar, Yung-Hoon Ha, Nikolay Nikoloy