Patents by Inventor Ranjit R. Darke

Ranjit R. Darke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7837752
    Abstract: A rigid or semi-rigid demister pad is positioned between an air turbine and an inertial water removal device such as extractor in an air conditioning system for an aircraft. The demister pad comprises packed fibers or strands whose diameter typically ranges from approximately 10 or fewer microns to approximately 280 microns. The demister is capable of catching very small droplets discharged from the air turbine that coalesce into larger droplets that exit the demister pad and enter an adjacent water removal device downstream from the pad to separate the larger water droplets from the stream of air. This avoids using a water separator containing a coalescer bag that requires frequent maintenance and is sensitive to dirt and freezing. The demister can operate at freezing temperature, is not dirt-sensitive and requires no maintenance.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: November 23, 2010
    Assignee: Honeywell International Inc.
    Inventors: Ranjit R. Darke, Michael B. Faust, Allen K. MacKnight, Russell Johnson, Alexander M. Bershitsky
  • Patent number: 7691185
    Abstract: A recirculating water extractor includes a swirl vane, a converging nozzle, and two sumps. The recirculating water extractor may be designed to reintroduce uncollected water droplets back into the air stream upstream of both sumps, which may provide additional opportunities for separation. The Coanda effect may be exploited to increase the discharge of water along a surface. Utilizing a converging nozzle may intensify the centrifugal force applied to the air stream rich with entrained water and may move more of entrained water into contact with the wall of the nozzle, which, in turn, may enhance the liquid/vapor separation compared to prior art water extractors. The recirculating water extractor utilizing the Coanda effect and the method for removing entrained water from an air stream may be suitable for, but not limited to, applications in the aircraft and aerospace industries, for example, by being included in environmental control systems of aircraft.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: April 6, 2010
    Assignee: Honeywell International Inc.
    Inventors: Ranjit R. Darke, Michael B. Faust, Dillon C. Sandoval
  • Publication number: 20090139403
    Abstract: A rigid or semi-rigid demister pad is positioned between an air turbine and an inertial water removal device such as extractor in an air conditioning system for an aircraft. The demister pad comprises packed fibers or strands whose diameter typically ranges from approximately 10 or fewer microns to approximately 280 microns. The demister is capable of catching very small droplets discharged from the air turbine that coalesce into larger droplets that exit the demister pad and enter an adjacent water removal device downstream from the pad to separate the larger water droplets from the stream of air. This avoids using a water separator containing a coalescer bag that requires frequent maintenance and is sensitive to dirt and freezing. The demister can operate at freezing temperature, is not dirt-sensitive and requires no maintenance.
    Type: Application
    Filed: December 3, 2007
    Publication date: June 4, 2009
    Inventors: Ranjit R. Darke, Michael B. Faust, Allen K. MacKnight, Russell Johnson, Alexander M. Bershitsky
  • Publication number: 20080271421
    Abstract: A recirculating water extractor includes a swirl vane, a converging nozzle, and two sumps. The recirculating water extractor may be designed to reintroduce uncollected water droplets back into the air stream upstream of both sumps, which may provide additional opportunities for separation. The Coanda effect may be exploited to increase the discharge of water along a surface. Utilizing a converging nozzle may intensify the centrifugal force applied to the air stream rich with entrained water and may move more of entrained water into contact with the wall of the nozzle, which, in turn, may enhance the liquid/vapor separation compared to prior art water extractors. The recirculating water extractor utilizing the Coanda effect and the method for removing entrained water from an air stream may be suitable for, but not limited to, applications in the aircraft and aerospace industries, for example, by being included in environmental control systems of aircraft.
    Type: Application
    Filed: December 14, 2006
    Publication date: November 6, 2008
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: RANJIT R. DARKE, MICHAEL B. FAUST, DILLON C. SANDOVAL