Patents by Inventor Raquel Perez-Castillejos

Raquel Perez-Castillejos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9551706
    Abstract: The ability to levitate, to separate, and to detect changes in density using diamagnetic particles suspended in solutions containing paramagnetic cations using an inhomogeneous magnetic field is described. The major advantages of this separation device are that: i) it is a simple apparatus that does not require electric power (a set of permanent magnets and gravity are sufficient for the diamagnetic separation and collection system to work); ii) it is compatible with simple optical detection (provided that transparent materials are used to fabricate the containers/channels where separation occurs; iii) it is simple to collect the separated particles for further processing; iv) it does not require magnetic labeling of the particles/materials; and v) it is small, portable.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: January 24, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Scott T. Phillips, George M. Whitesides, Katherine A. Mirica, Emanuel Carrilho, Andres W. Martinez, Sergey S. Shevkoplyas, Phillip W. Snyder, Raquel Perez-Castillejos, Malancha Gupta, Adam Winkleman, Katherine L. Gudiksen
  • Patent number: 9023458
    Abstract: In one aspect, methods of patterning of thin films of an ionotropic polymer (e.g., poly(acrylic acid)) are provided. These processes can create micron or sub-micron-scale patterns of ionotropic polymers such as cation crosslinked poly(acrylic acid) (CCL-PAA). In one embodiment, patterning may be performed within microfluidic channels by flowing a solution of crosslinking agent (e.g., metal cations such as Ag+, Ca2+, Pd2+, Al3+, La3+, and Ti4+) that can crosslink a portion of an ionotropic polymer in contact with the solution. In another embodiment, methods of patterning ionotropic polymers involve photolithography. Upon patterning a positive photoresist (e.g., diazonaphthoquinone-novolac resin) on a film of CCL-PAA, the exposed regions of CCL-PAA can be etched by an aqueous solution. Advantageously, the patterned, crosslinked polymer may also serve as both a reactant and a matrix for subsequent chemistry.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: May 5, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Michal Lahav, Adam Winkleman, Max Narovlyansky, Raquel Perez-Castillejos, Emily A. Weiss, Leonard N. J. Rodriguez, George M. Whitesides
  • Publication number: 20100285606
    Abstract: The ability to levitate, to separate, and to detect changes in density using diamagnetic particles suspended in solutions containing paramagnetic cations using an inhomogeneous magnetic field is described. The major advantages of this separation device are that: i) it is a simple apparatus that does not require electric power (a set of permanent magnets and gravity are sufficient for the diamagnetic separation and collection system to work); ii) it is compatible with simple optical detection (provided that transparent materials are used to fabricate the containers/channels where separation occurs; iii) it is simple to collect the separated particles for further processing; iv) it does not require magnetic labeling of the particles/materials; and v) it is small, portable.
    Type: Application
    Filed: June 30, 2008
    Publication date: November 11, 2010
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Scott T. Phillips, George M. Whitesides, Katherine A. Mirica, Emanuel Carrilho, Andres W. Martinez, Sergey S. Shevkoplyas, Phillip W. Snyder, Raquel Perez-Castillejos, Malancha Gupta, Adam Winkleman, Katherine L. Gudiksen
  • Publication number: 20100233434
    Abstract: In one aspect, methods of patterning of thin films of an ionotropic polymer (e.g., poly(acrylic acid)) are provided. These processes can create micron or sub-micron-scale patterns of ionotropic polymers such as cation crosslinked poly(acrylic acid) (CCL-PAA). In one embodiment, patterning may be performed within microfluidic channels by flowing a solution of crosslinking agent (e.g., metal cations such as Ag+, Ca2+, Pd2+, Al3+, La3+, and Ti4+) that can crosslink a portion of an ionotropic polymer in contact with the solution. In another embodiment, methods of patterning ionotropic polymers involve photolithography. Upon patterning a positive photoresist (e.g., diazonaphthoquinone-novolac resin) on a film of CCL-PAA, the exposed regions of CCL-PAA can be etched by an aqueous solution. Advantageously, the patterned, crosslinked polymer may also serve as both a reactant and a matrix for subsequent chemistry.
    Type: Application
    Filed: October 18, 2007
    Publication date: September 16, 2010
    Applicant: President and Fellows of Harvard College
    Inventors: Michal Lahav, Adam Winkleman, Max Narovlyansky, Raquel Perez-Castillejos, Emily A. Weiss, Leonard N.J. Rodriguez, George M. Whitesides