Patents by Inventor Rashid Bashir

Rashid Bashir has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210354139
    Abstract: A microfluidic diagnostic device with a three-dimensional (3D) flow architecture comprises a polymeric body having first and second opposing surfaces and comprising first flow channels in the first opposing surface, second flow channels in the second opposing surface, and connecting flow passages extending through a thickness of the polymeric body to connect the first flow channels to the second flow channels, thereby defining a continuous 3D flow pathway in the polymeric body. The microfluidic diagnostic device also includes a first cover adhered to the first opposing surface to seal the first flow channels, a second cover adhered to the second opposing surface to seal the second flow channels, and one or more access ports in fluid communication with the continuous 3D flow pathway for introducing liquid reagent(s) and/or a sample into the polymeric body.
    Type: Application
    Filed: May 11, 2021
    Publication date: November 18, 2021
    Inventors: William P. King, Rashid Bashir, Mehmet Y. Aydin, Jacob E. Berger, Enrique Valera
  • Publication number: 20210339244
    Abstract: Provided are methods and related devices for preparing a cell and tissue culture, including a hanging drop culture. Microwells are specially loaded with cell mixtures using a removable reservoir and forcing cells into the underlying microwells. The removable reservoir is removed and the cells partitioned into the individual microwells and covered by an immiscible layer of fluid. The microwells and immiscible layer is inverted and the cells in the microwells cultured. The microwells may have shape-controlling elements to control the three-dimensional shape of the culture.
    Type: Application
    Filed: May 4, 2021
    Publication date: November 4, 2021
    Inventors: Anurup GANGULI, Rashid BASHIR, Panagiotis Z. ANASTASIADIS, George VASMATZIS
  • Patent number: 11027274
    Abstract: A stacked testing assembly (100) includes a microfluidic cartridge (10) for analyzing a fluid sample and a testing setup, said microfluidic cartridge includes a number of layers (1, 2) stacked in a height direction with many different kinds of combinations, said testing setup (20) is capable of assembling and testing all kinds of said layers combinations with no change to the setup.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: June 8, 2021
    Assignees: FOXCONN INTERCONNECT TECHNOLOGY LIMITED
    Inventors: Bobby Reddy, Jr., Rashid Bashir, Samuel Wachspress, Lauren Penrose, Chun-Yi Chang, Been-Yang Liaw
  • Patent number: 10906169
    Abstract: The present disclosure provides a biological machine comprising a skeleton comprising at least one hydrogel strip and at least two hydrogel bases, and at least one bioactuator, the at least one bioactuator comprising at least one muscle ring, the muscle ring comprising skeletal muscle cells, wherein the muscle ring is tethered around the at least two pillars. The muscle ring can comprises skeletal muscle, and skeletal muscle innervated with motor neurons, allowing chemical control of muscle contraction. Methods of making the biological machine is also provided.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: February 2, 2021
    Assignee: BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Rashid Bashir, Ritu Raman, Caroline Cvetkovic
  • Publication number: 20210010079
    Abstract: Various methods and devices for spatial molecular analysis from tissue is provided. For example, a method of spatially mapping a tissue sample is provided with a microarray having a plurality of wells, wherein adjacent wells are separated by a shearing surface; overlaying said microarray with a tissue sample; applying a deformable substrate to an upper surface of said tissue sample; applying a force to the deformable substrate, thereby forcing underlying tissue sample into the plurality of wells; shearing the tissue sample along the shearing surface into a plurality of tissue sample islands, with each unique tissue sample island positioned in a unique well; and imaging or quantifying said plurality of tissue sample islands, thereby generating a spatial map of said tissue sample. The imaging and/or quantifying may use a nucleic acid amplification technique.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 14, 2021
    Applicants: The Board of Trustees of the University of Illinois, Mayo Foundation for Medical Education and Research
    Inventors: Rashid BASHIR, Anurup GANGULI, Farhad KOSARI
  • Publication number: 20200391169
    Abstract: Provided herein are multiplexible particle systems and related methods of making and using the multiplexible particle systems. A plurality of monodisperse polymer particle populations are provided, wherein each population has a unique electrical parameter for multiplexed detection by flow through a spatially confined electric field, and the distribution of the electrical parameter within each population is sufficiently narrow for reliable multiplex detection. The density difference between populations may be relatively uniform, such as within 30%, including within 30% of a suspending solution density for when the particles are flowed through a confined electric field and detected in a multiplex manner by a change in the electric parameter measured by a counting device. Relatively uniform density of particles is important for ensuring minimal settling while the plurality of particle populations flow together under a single flow regime.
    Type: Application
    Filed: May 26, 2020
    Publication date: December 17, 2020
    Inventors: Hee-Sun HAN, Rashid BASHIR, Thomas COWELL, Enrique VALERA, Anurup GANGULI
  • Publication number: 20200263244
    Abstract: Described herein are systems and methods which utilize an array of wells to isolate pathogens and nucleic acid detection techniques to accurately and rapidly detect pathogens in fluid samples, even in very low concentrations, including from solid or semi-solid samples that have been fluidized. The provided systems and methods dry the fluid sample to deposit a fraction of the total volume in a number of wells and perform nucleic acid detection on individual wells to detect even individual pathogens and provide a quantitative analysis of the amount of pathogen within the sample. Also provided are methods and systems for precise delivery of dried materials, including biomolecules that are enzymes of use in the process, to microwells.
    Type: Application
    Filed: October 5, 2018
    Publication date: August 20, 2020
    Inventors: Rashid BASHIR, Anurup GANGULI
  • Patent number: 10724089
    Abstract: Various methods and devices for spatial molecular analysis from tissue is provided. For example, a method of spatially mapping a tissue sample is provided with a microarray having a plurality of wells, wherein adjacent wells are separated by a shearing surface; overlaying said microarray with a tissue sample; applying a deformable substrate to an upper surface of said tissue sample; applying a force to the deformable substrate, thereby forcing underlying tissue sample into the plurality of wells; shearing the tissue sample along the shearing surface into a plurality of tissue sample islands, with each unique tissue sample island positioned in a unique well; and imaging or quantifying said plurality of tissue sample islands, thereby generating a spatial map of said tissue sample. The imaging and/or quantifying may use a nucleic acid amplification technique.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: July 28, 2020
    Assignees: The Board of Trustees of the University of Illinois, Mayo Foundation for Medical Education and Research
    Inventors: Rashid Bashir, Anurup Ganguli, Farhad Kosari
  • Publication number: 20200103370
    Abstract: Provided are methods and devices for the label free detection of analytes in solution, including analytes suspended in a biological fluid. A field effect transistor (FET) is positioned in close proximity to a paired set of reference electrodes and the reference electrodes electrically biased to provide desalting and a stable gate voltage to the FET. In this manner, charged ions are depleted in the sensing region of the sensor and device sensitivity to analyte detection improved by the removal of charge that otherwise interferes with measurement. Also provided are methods and systems providing increased in reference electrode surface area and/or decrease in droplet volume to further improve label-free detection of analytes.
    Type: Application
    Filed: November 20, 2019
    Publication date: April 2, 2020
    Inventors: Rashid BASHIR, Vikhram VILASUR SWAMINATHAN, Bobby REDDY, JR., Eric M. SALM, Carlos DUARTE-GUEVARA
  • Publication number: 20200023360
    Abstract: A sample carrier may include a sample preparation module and an amplification module. A sample mixes with a lysis medium and a nucleic acid amplification medium in the sample preparation module and then flows into a plurality of microfluidic chambers in the amplification module. The microfluidic chambers have disposed therein primers configured to initiate amplification of one or more target nucleic acid sequences corresponding to one or more pathogens. The sample carrier is inserted into an apparatus that includes a plurality of Sight sources and a camera. The light sources illuminate the microfluidic chambers with excitation light, a fluorophore emits fluorescence light indicative of nucleic acid amplification in response to the excitation-light, and the camera captures images of the microfluidic chambers. A target nucleic acid sequence in the sample is indicated by the images showing an increasing fluorescence in a microfluidic chamber that has the primers for that sequence.
    Type: Application
    Filed: March 20, 2018
    Publication date: January 23, 2020
    Inventors: Brian T. CUNNINGHAM, Rashid BASHIR, Anurup GANGULI, Akid ORNOB, Gregory DAMHORST, Hojeong YU, Weili CHEN, Fu SUN
  • Patent number: 10527568
    Abstract: This disclosure relates to methods and devices to count particles of interest, such as cells. The methods include obtaining a fluid sample that may contain particles of interest; counting all types of particles in a portion of the sample using a first electrical differential counter to generate a first total; removing any particles of interest from the portion of the fluid sample; counting any particles remaining in the portion of the fluid sample using a second electrical differential counter after the particles of interest are removed to generate a second total; and calculating a number of particles of interest originally in the fluid sample by subtracting the second total from the first total, wherein the difference is the number of particles of interest in the sample. These methods and related devices can be used, for example, to produce a robust, inexpensive diagnostic kit for CD4+ T cell counting in whole blood samples.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: January 7, 2020
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology, The Board of Trustees of the University of Illinois, Daktari Diagnostics, Inc.
    Inventors: Nicholas Watkins, Rashid Bashir, William Rodriguez, Xuanhong Cheng, Mehmet Toner, Grace Chen, Aaron Oppenheimer
  • Patent number: 10527579
    Abstract: Provided are methods and devices for the label free detection of analytes in solution, including analytes suspended in a biological fluid. A field effect transistor (FET) is positioned in close proximity to a paired set of reference electrodes and the reference electrodes electrically biased to provide desalting and a stable gate voltage to the FET. In this manner, charged ions are depleted in the sensing region of the sensor and device sensitivity to analyte detection improved by the removal of charge that otherwise interferes with measurement. Also provided are methods and systems providing increased in reference electrode surface area and/or decrease in droplet volume to further improve label-free detection of analytes.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: January 7, 2020
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Rashid Bashir, Vikhram Vilasur Swaminathan, Bobby Reddy, Jr., Eric M. Salm, Carlos Duarte-Guevara
  • Publication number: 20190178840
    Abstract: Provided herein are methods and devices for characterizing a biomolecule parameter by a nanopore-containing membrane, and also methods for making devices that can be used in the methods and devices provided herein. The nanopore membrane is a multilayer stack of conducting layers and dielectric layers, wherein an embedded conducting layer or conducting layer gates provides well-controlled and measurable electric fields in and around the nanopore through which the biomolecule translocates. In an aspect, the conducting layer is graphene.
    Type: Application
    Filed: August 31, 2018
    Publication date: June 13, 2019
    Inventors: Rashid BASHIR, Bala Murali VENKATESAN
  • Publication number: 20190011349
    Abstract: Provided are methods and systems that characterize a property of a particle suspended in a fluid sample in a label-free manner. Detection elements are provided fluidically adjacent upstream and downstream from a modulation element. Fluid sample containing particles flows across a first detection element and a first particle parameter detected for each particle that passes the first detection element or a first aggregate particle parameter for a plurality of particles that pass the first detection element. The particles flow from the first detection element to a first modulation element, wherein the first modulation element effects a change in a property of the particles flowing past the first modulation element. A second detection element then detects the particle parameter again or a second aggregate particle parameter for a plurality of particles that pass the second detection element. Comparing the first and second particle or aggregate parameters thereby characterizes the particle property.
    Type: Application
    Filed: January 12, 2017
    Publication date: January 10, 2019
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Rashid BASHIR, Bobby REDDY, Jr., Tanmay GHONGE, Umer HASSAN, Gary DURACK, Gregory DAMHORST
  • Patent number: 10175195
    Abstract: Provided herein are methods and devices for characterizing a biomolecule parameter by a nanopore-containing membrane, and also methods for making devices that can be used in the methods and devices provided herein. The nanopore membrane is a multilayer stack of conducting layers and dielectric layers, wherein an embedded conducting layer or conducting layer gates provides well-controlled and measurable electric fields in and around the nanopore through which the biomolecule translocates. In an aspect, the conducting layer is graphene.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: January 8, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Rashid Bashir, Bala Murali Venkatesan
  • Publication number: 20180364186
    Abstract: This disclosure relates to methods and devices to count particles of interest, such as cells. The methods include obtaining a fluid sample that may contain particles of interest; counting all types of particles in a portion of the sample using a first electrical differential counter to generate a first total; removing any particles of interest from the portion of the fluid sample; counting any particles remaining in the portion of the fluid sample using a second electrical differential counter after the particles of interest are removed to generate a second total; and calculating a number of particles of interest originally in the fluid sample by subtracting the second total from the first total, wherein the difference is the number of particles of interest in the sample. These methods and related devices can be used, for example, to produce a robust, inexpensive diagnostic kit for CD4+ T cell counting in whole blood samples.
    Type: Application
    Filed: May 21, 2018
    Publication date: December 20, 2018
    Inventors: Nicholas Watkins, Rashid Bashir, William Rodriguez, Xuanhong Cheng, Mehmet Toner, Grace Chen, Aaron Oppenheimer
  • Patent number: 10156560
    Abstract: The invention provides locomotive biological machines comprised of hydrogel structures and one or more types of cells. The locomotive biological machines are capable of controlled directional movement and can be used for sensing, information processing, actuation, protein expression, and transportation.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: December 18, 2018
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Rashid Bashir, Vincent Chan, Ritu Raman, Caroline Cvetkovic
  • Patent number: 10094801
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity. An amplification factor of the BioFET device may be provided by a difference in capacitances associated with the gate structure on the first surface and with the interface layer formed on the second surface.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: October 9, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, LTD.
    Inventors: Yi-Shao Liu, Rashid Bashir, Fei-Lung Lai, Chun-wen Cheng
  • Publication number: 20180214870
    Abstract: A stacked testing assembly (100) includes a microfluidic cartridge (10) for analyzing a fluid sample and a testing setup, said microfluidic cartridge includes a number of layers (1, 2) stacked in a height direction with many different kinds of combinations, said testing setup (20) is capable of assembling and testing all kinds of said layers combinations with no change to the setup.
    Type: Application
    Filed: January 25, 2018
    Publication date: August 2, 2018
    Inventors: Bobby Reddy, JR., Rashid Bashir, Samuel Wachspress, Lauren Penrose, CHUN-YI CHANG, BEEN-YANG LIAW
  • Patent number: 9976973
    Abstract: This disclosure relates to methods and devices to count particles of interest, such as cells. The methods include obtaining a fluid sample that may contain particles of interest; counting all types of particles in a portion of the sample using a first electrical differential counter to generate a first total; removing any particles of interest from the portion of the fluid sample; counting any particles remaining in the portion of the fluid sample using a second electrical differential counter after the particles of interest are removed to generate a second total; and calculating a number of particles of interest originally in the fluid sample by subtracting the second total from the first total, wherein the difference is the number of particles of interest in the sample. These methods and related devices can be used, for example, to produce a robust, inexpensive diagnostic kit for CD4+ T cell counting in whole blood samples.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: May 22, 2018
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology, The Board of Trustees of the University of Illinois, Daktari Diagnostics, Inc.
    Inventors: Nicholas Watkins, Rashid Bashir, William Rodriguez, Xuanhong Cheng, Mehmet Toner, Grace Chen, Aaron Oppenheimer