Patents by Inventor Ravi Arora

Ravi Arora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070298486
    Abstract: The invention described herein concerns microchannel apparatus that contains, within the same device, at least one manifold and multiple connecting microchannels that connect with the manifold. For superior heat or mass flux in the device, the volume of the connecting microchannels should exceed the volume of manifold or manifolds. Methods of conducting unit operations in microchannel devices having simultaneous disrupted and non-disrupted flow through microchannels is also described.
    Type: Application
    Filed: June 14, 2007
    Publication date: December 27, 2007
    Applicant: Velocys Inc.
    Inventors: Ravi Arora, Anna Tonkovich, Dongming Qiu, Laura Silva
  • Publication number: 20070256736
    Abstract: The disclosed invention relates to a process, comprising: conducting unit operations in at least two process zones in a process microchannel to treat and/or form a non-Newtonian fluid, a different unit operation being conducted in each process zone; and applying an effective amount of shear stress to the non-Newtonian fluid to reduce the viscosity of the non-Newtonian fluid in each process zone, the average shear rate in one process zone differing from the average shear rate in another process zone by a factor of at least about 1.2.
    Type: Application
    Filed: April 20, 2007
    Publication date: November 8, 2007
    Inventors: Anna Lee Tonkovich, Ravi Arora, David Kilanowski, Eric Daymo
  • Publication number: 20070246106
    Abstract: The invention describes features that can be used to control flow to an array of microchannels. The invention also describes methods in which a process stream is distributed to plural microchannels.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 25, 2007
    Applicant: Velocys Inc.
    Inventors: Anna Tonkovich, Ravi Arora, David Kilanowski
  • Patent number: 7250074
    Abstract: The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: July 31, 2007
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Dongming Qiu, Terence Andrew Dritz, Paul Neagle, Robert Dwayne Litt, Ravi Arora, Michael Jay Lamont, Kristina M. Pagnotto
  • Patent number: 7250151
    Abstract: Integrated Combustion Reactors (ICRS) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: July 31, 2007
    Assignee: Velocys
    Inventors: Anna Lee Tonkovich, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Richard Q. Long, Wm. Allen Rogers, Ravi Arora, Wayne W. Simmons, Barry L. Yang, Yong Wang, Thomas Forte, Robert Jetter
  • Publication number: 20070085227
    Abstract: The disclosed technology relates to a process for contacting a liquid phase and a second fluid phase, comprising: flowing the liquid phase and/or second fluid phase in a process microchannel in contact with surface features in the process microchannel, the contacting of the surface features with the liquid phase and/or second fluid phase imparting a disruptive flow to the liquid phase and/or second fluid phase; contacting the liquid phase with the second fluid phase in the process microchannel; and transferring mass from the liquid phase to the second fluid phase and/or from the second fluid phase to the liquid phase.
    Type: Application
    Filed: July 7, 2006
    Publication date: April 19, 2007
    Inventors: Anna Tonkovich, Maddalena Fanelli, Ravi Arora, Timothy Sullivan, Steven Perry, David Kuhlmann
  • Publication number: 20070017633
    Abstract: This invention relates to microchannel apparatus that includes microchannels with interior surface features for modifying flow; processes utilizing this microchannel architecture, and methods of making apparatus having these features.
    Type: Application
    Filed: March 23, 2006
    Publication date: January 25, 2007
    Inventors: Anna Tonkovich, Bin Yang, Steven Perry, Sean Fitzgerald, Ravi Arora, Kai Jarosch, Thomas Yuschak, Maddalena Fanelli, Tim Sullivan, Terry Masanec
  • Publication number: 20060275185
    Abstract: The invention provides apparatuses and techniques for controlling flow between a manifold and two or more connecting microchannels. Flow between plural connecting microchannels, that share a common manifold, can be made more uniform by the use of flow straighteners and distributors that equalize flow in connecting channels. Alternatively, flow can be made more uniform by sections of narrowed diameter within the channels. Methods of making apparatus and methods of conducting unit operations in connecting channels are also described.
    Type: Application
    Filed: April 7, 2006
    Publication date: December 7, 2006
    Inventors: Anna Tonkovich, Bin Yang, Steven Perry, Sean Fitzgerald, Ravi Arora, Robert Luzenski, Thomas Yuschak
  • Publication number: 20060249020
    Abstract: The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.
    Type: Application
    Filed: March 2, 2006
    Publication date: November 9, 2006
    Inventors: Anna Tonkovich, Steven Perry, Ravi Arora, Dongming Qiu, Micheal Lamont, Deanna Burwell, Terence Dritz, Jeffrey McDaniel, William Rogers, Laura Silva, Daniel Weidert, Wayne Simmons, G. Chadwell
  • Publication number: 20060214687
    Abstract: An isolation cell provided between a first module (which can operate in either a power-up mode or a power down mode) and a second module. According to an aspect of the present invention, the isolation cell can be located to operate drawing power from either the first module or the second module without a floating node in the power-down mode of the first module. Due to the absence of the floating nodes, unneeded power drain is reduced/avoided. In one embodiment, a switch operates to connect power to a series of pair of inverters (propagating the signal from the first module to the second module) when the first module is in power-up mode and disconnects the power in the power-down mode.
    Type: Application
    Filed: May 6, 2005
    Publication date: September 28, 2006
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ravi ARORA, Anand VENKITACHALAM
  • Publication number: 20060142401
    Abstract: The invention provides methods, apparatus and systems in which there is partial boiling of a liquid in a mini-channel or microchannel. The partial boiling removes heat from an exothermic process.
    Type: Application
    Filed: November 3, 2005
    Publication date: June 29, 2006
    Inventors: Anna Tonkovich, David Hesse, Sean Fitzgerald, Bin Yang, Ravi Arora, Laura Silva, G. Chadwell, Kai Jarosch, Dongming Qiu
  • Publication number: 20060129015
    Abstract: The disclosed invention relates to a process, comprising: flowing a first reactant feed stream comprising a reactant substrate and a second reactant feed stream comprising an alkylating agent, an acylating agent or a mixture thereof, in a process microchannel in contact with each other to form a product comprising at least one alkylation product, at least one acylation product, or a mixture thereof; transferring heat from the process microchannel to a heat sink; and removing the product from the process microchannel.
    Type: Application
    Filed: November 11, 2005
    Publication date: June 15, 2006
    Inventors: Anna Tonkovich, Steven Perry, Timothy LaPlante, Kai Jarosch, Thomas Hickey, Sean Fitzgerald, Dongming Qiu, Ravi Arora, Timothy Sullivan, Paul Neagle
  • Publication number: 20060073080
    Abstract: The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 6, 2006
    Inventors: Anna Tonkovich, Laura Silva, David Hesse, Michael Marchiando, Micheal Lamont, Dongming Qiu, Terence Dritz, Kristina Pagnotto, Richard Stevenson, Steven Perry, Maddalena Fanelli, Ravi Arora, Bin Yang, Sean Fitzgerald, Timothy Sullivan, Kai Tod Jarosch, Thomas Yuschak
  • Patent number: 7000427
    Abstract: This invention relates to a process for cooling or liquefying a fluid product (e.g., natural gas) in a heat exchanger, the process comprising: flowing a fluid refrigerant through a set of refrigerant microchannels in the heat exchanger; and flowing the product through a set of product microchannels in the heat exchanger, the product flowing through the product microchannels exchanging heat with the refrigerant flowing through the refrigerant microchannels, the product exiting the set of product microchannels being cooler than the product entering the set of product microchannels. The process has a wide range of applications, including liquefying natural gas.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: February 21, 2006
    Assignee: Velocys, Inc.
    Inventors: James A. Mathias, Ravi Arora, Wayne W. Simmons, Jeffrey S. McDaniel, Anna Lee Tonkovich, William A. Krause, Laura J. Silva, Dongming Qiu
  • Publication number: 20060016216
    Abstract: The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.
    Type: Application
    Filed: July 8, 2005
    Publication date: January 26, 2006
    Inventors: Anna Tonkovich, Wayne Simmons, Laura Silva, Dongming Qiu, Steven Perry, Thomas Yuschak, Thomas Hickey, Ravi Arora, Amanda Smith, Robert Litt, Paul Neagle
  • Publication number: 20050271563
    Abstract: The invention describes microchannel apparatus and catalysts that contain a layer of a metal aluminide or are made in a process in which a metal aluminide layer is formed as an intermediate. Certain processing conditions have surprisingly been found to result in superior coatings. The invention includes chemical processes conducted through apparatus described in the specification. Other catalysts and catalyst synthesis techniques are also described.
    Type: Application
    Filed: March 23, 2005
    Publication date: December 8, 2005
    Inventors: Barry Yang, Francis Daly, Junko Watson, Terry Manzanec, Sean Fitzgerald, Bradley Johnson, Xiaohong Li, Chunshe Cao, Ya-Huei Chin, Anna Tonkovich, Ravi Arora, David Hesse, Dongming Qiu, Rachid Taha, Jeffrey Ramler, Yong Wang
  • Publication number: 20050244304
    Abstract: Interior microchannels within microchannel apparatus are uniformly coated. Remarkably, these uniform coatings are formed from materials that are applied to the interior microchannels after an apparatus has been assembled or manufactured. Coatings can be made uniform along the length of a microchannel, in the corner of a microchannel, and/or throughout numerous microchannels in an array of microchannels. Techniques for tailoring the application of washcoats onto microchannels is also described.
    Type: Application
    Filed: March 23, 2005
    Publication date: November 3, 2005
    Inventors: Anna Tonkovich, Barry Yang, Terry Mazanec, Francis Daly, Sean Fitzgerald, Ravi Arora, Dongming Qiu, Bin Yang, Steven Perry, Kai Jarosh, Paul Neagle, David Hesse, Rachid Taha, Richard Long, Jeff Marco, Thomas Yuschak, Jeffrey Ramler, Mike Marchiando
  • Publication number: 20050087767
    Abstract: Novel manifolds and methods of flow through manifolds are described. Apparatus and techniques are described in which flow from a relatively large volume header is equally distributed to process channels. Methods of making laminated, microchannel devices are also described.
    Type: Application
    Filed: October 27, 2003
    Publication date: April 28, 2005
    Inventors: Sean Fitzgerald, Anna Tonkovich, Ravi Arora, Dongming Qiu, Thomas Yuschak, Laura Silva, Wm. Rogers, Kai Jarosch, Matthew Schmidt
  • Publication number: 20050045030
    Abstract: The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.
    Type: Application
    Filed: August 26, 2004
    Publication date: March 3, 2005
    Inventors: Anna-Lee Tonkovich, Dongming Oiu, Terence Dritz, Paul Neagle, Robert Litt, Ravi Arora, Michael Lamont, Kristina Pagnotto
  • Publication number: 20040055329
    Abstract: This invention relates to a process for cooling or liquefying a fluid product (e.g., natural gas) in a heat exchanger, the process comprising: flowing a fluid refrigerant through a set of refrigerant microchannels in the heat exchanger; and flowing the product through a set of product microchannels in the heat exchanger, the product flowing through the product microchannels exchanging heat with the refrigerant flowing through the refrigerant microchannels, the product exiting the set of product microchannels being cooler than the product entering the set of product microchannels. The process has a wide range of applications, including liquefying natural gas.
    Type: Application
    Filed: August 8, 2003
    Publication date: March 25, 2004
    Inventors: James A. Mathias, Ravi Arora, Wayne W. Simmons, Jeffrey S. McDaniel, Anna Lee Tonkovich, William A. Krause, Laura J. Silva, Dongming Qiu