Patents by Inventor Ravi Joshi

Ravi Joshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9917170
    Abstract: A method of forming a contact structure includes providing a silicon-carbide substrate having a highly doped silicon-carbide contact region formed in the substrate and extending to a main surface of the substrate. A carbon-based contact region is formed which is in direct contact with the highly doped silicon-carbide contact region and which extends to the main surface. A conductor is formed on the carbon-based contact region such that the carbon-based contact region is interposed between the conductor and the highly doped silicon-carbide contact region. A thermal budget for forming the carbon-based contact region is maintained below a level that induces metal silicidization of the highly doped silicon-carbide contact region.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: March 13, 2018
    Assignee: Infineon Technologies AG
    Inventors: Ravi Joshi, Romain Esteve, Markus Kahn, Gerald Unegg
  • Patent number: 9899325
    Abstract: In various embodiments a method of forming a device is provided. The method includes forming a metal layer over a substrate and forming at least one barrier layer. The forming of the barrier layer includes depositing a solution comprising a metal complex over the substrate and at least partially decomposing of the ligand of the metal complex.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: February 20, 2018
    Assignee: INFINEON TECHNOLOGIES AG
    Inventor: Ravi Joshi
  • Publication number: 20180012836
    Abstract: In various embodiments a method for manufacturing a metallization layer on a substrate is provided, wherein the method may include providing a structured layer of a catalyst material on the substrate, the catalyst material may include a first layer of material arranged over the substrate and a second layer of material arranged over the first layer of material, wherein the structured layer of catalyst material having a first set of regions including the catalyst material over the substrate and a second set of regions free of the catalyst material over the substrate, and forming a plurality of groups of nanotubes over the substrate, each group of the plurality of groups of nanotubes includes a plurality of nanotubes formed over a respective region in the first set of regions.
    Type: Application
    Filed: September 1, 2017
    Publication date: January 11, 2018
    Inventors: Ravi Joshi, Juergen Steinbrenner
  • Publication number: 20170309720
    Abstract: A method of forming a contact structure includes providing a silicon-carbide substrate having a highly doped silicon-carbide contact region formed in the substrate and extending to a main surface of the substrate. A carbon-based contact region is formed which is in direct contact with the highly doped silicon-carbide contact region and which extends to the main surface. A conductor is formed on the carbon-based contact region such that the carbon-based contact region is interposed between the conductor and the highly doped silicon-carbide contact region. A thermal budget for forming the carbon-based contact region is maintained below a level that induces metal silicidization of the highly doped silicon-carbide contact region.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 26, 2017
    Inventors: Ravi Joshi, Romain Esteve, Markus Kahn, Gerald Unegg
  • Patent number: 9768273
    Abstract: In one aspect, a method of forming a trench in a semiconductor material includes forming a first dielectric layer on a semiconductor substrate. The first dielectric layer includes first openings. An epitaxial layer is grown on the semiconductor substrate by an epitaxial lateral overgrowth process. The first openings are filled by the epitaxial layer and the epitaxial layer is grown onto adjacent portions of the first dielectric layer so that part of the first dielectric layer is uncovered by the epitaxial layer and a gap forms between opposing sidewalls of the epitaxial layer over the part of the first dielectric layer that is uncovered by the epitaxial layer. The gap defines a first trench in the epitaxial layer that extends to the first dielectric layer.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 19, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Ravi Joshi, Johannes Baumgartl, Martin Poelzl, Matthias Kuenle, Juergen Steinbrenner, Andreas Haghofer, Christoph Gruber, Georg Ehrentraut
  • Patent number: 9704800
    Abstract: In various embodiments a method for manufacturing a metallization layer on a substrate is provided, wherein the method may include forming a plurality of groups of nanotubes over a substrate, wherein the groups of nanotubes may be arranged such that a portion of the substrate is exposed and forming metal over the exposed portion of the substrate between the plurality of groups of nanotubes.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: July 11, 2017
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Ravi Joshi, Juergen Steinbrenner
  • Publication number: 20170011927
    Abstract: A method for depositing an insulating layer includes performing a primary deposition over a sidewall of a feature by depositing a layer of silicate glass using a silicon source at a first flow rate and a dopant source at a second flow rate. A ratio of the flow of the dopant source to the flow of the silicon source is a first ratio. The method further includes performing a secondary deposition over the sidewall of a feature by increasing the flow of the silicon source relative to the flow of the dopant source. The ratio of the flow of the dopant source to the flow of the silicon source is a second ratio lower than the first ratio, and stopping the flow of the silicon source after performing the secondary deposition. A reflow process is performed after stopping the flow. A variation in thickness of the layer of silicate glass over the sidewall of a feature after the reflow process is between 1% to 20%.
    Type: Application
    Filed: September 22, 2016
    Publication date: January 12, 2017
    Inventors: Juergen Steinbrenner, Markus Kahn, Helmut Schoenherr, Ravi Joshi, Heimo Hofer, Martin Poelzl, Harald Huetter
  • Publication number: 20160308028
    Abstract: In one aspect, a method of forming a trench in a semiconductor material includes forming a first dielectric layer on a semiconductor substrate. The first dielectric layer includes first openings. An epitaxial layer is grown on the semiconductor substrate by an epitaxial lateral overgrowth process. The first openings are filled by the epitaxial layer and the epitaxial layer is grown onto adjacent portions of the first dielectric layer so that part of the first dielectric layer is uncovered by the epitaxial layer and a gap forms between opposing sidewalls of the epitaxial layer over the part of the first dielectric layer that is uncovered by the epitaxial layer. The gap defines a first trench in the epitaxial layer that extends to the first dielectric layer.
    Type: Application
    Filed: June 20, 2016
    Publication date: October 20, 2016
    Inventors: Ravi Joshi, Johannes Baumgartl, Martin Poelzl, Matthias Kuenle, Juergen Steinbrenner, Andreas Haghofer, Christoph Gruber, Georg Ehrentraut
  • Patent number: 9455136
    Abstract: A method for depositing an insulating layer includes performing a primary deposition over a sidewall of a feature by depositing a layer of silicate glass using a silicon source at a first flow rate and a dopant source at a second flow rate. A ratio of the flow of the dopant source to the flow of the silicon source is a first ratio. The method further includes performing a secondary deposition over the sidewall of a feature by increasing the flow of the silicon source relative to the flow of the dopant source. The ratio of the flow of the dopant source to the flow of the silicon source is a second ratio lower than the first ratio, and stopping the flow of the silicon source after performing the secondary deposition. A reflow process is performed after stopping the flow. A variation in thickness of the layer of silicate glass over the sidewall of a feature after the reflow process is between 1% to 20%.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: September 27, 2016
    Assignee: Infineon Technologies Austria AG
    Inventors: Juergen Steinbrenner, Markus Kahn, Helmut Schoenherr, Ravi Joshi, Heimo Hofer, Martin Poelzl, Harald Huetter
  • Publication number: 20160218002
    Abstract: A method for depositing an insulating layer includes performing a primary deposition over a sidewall of a feature by depositing a layer of silicate glass using a silicon source at a first flow rate and a dopant source at a second flow rate. A ratio of the flow of the dopant source to the flow of the silicon source is a first ratio. The method further includes performing a secondary deposition over the sidewall of a feature by increasing the flow of the silicon source relative to the flow of the dopant source. The ratio of the flow of the dopant source to the flow of the silicon source is a second ratio lower than the first ratio, and stopping the flow of the silicon source after performing the secondary deposition. A reflow process is performed after stopping the flow. A variation in thickness of the layer of silicate glass over the sidewall of a feature after the reflow process is between 1% to 20%.
    Type: Application
    Filed: January 23, 2015
    Publication date: July 28, 2016
    Inventors: Juergen Steinbrenner, Markus Kahn, Helmut Schoenherr, Ravi Joshi, Heimo Hofer, Martin Poelzl, Harald Huetter
  • Patent number: 9379196
    Abstract: In one aspect, a method of forming a trench in a semiconductor material includes forming a first dielectric layer on a semiconductor substrate. The first dielectric layer includes first openings. An epitaxial layer is grown on the semiconductor substrate by an epitaxial lateral overgrowth process. The first openings are filled by the epitaxial layer and the epitaxial layer is grown onto adjacent portions of the first dielectric layer so that part of the first dielectric layer is uncovered by the epitaxial layer and a gap forms between opposing sidewalls of the epitaxial layer over the part of the first dielectric layer that is uncovered by the epitaxial layer. The gap defines a first trench in the epitaxial layer that extends to the first dielectric layer.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: June 28, 2016
    Assignee: Infineon Technologies Austria AG
    Inventors: Ravi Joshi, Johannes Baumgartl, Martin Poelzl, Matthias Kuenle, Juergen Steinbrenner, Andreas Haghofer, Christoph Gruber, Georg Ehrentraut
  • Publication number: 20160043034
    Abstract: In various embodiments a method of forming a device is provided. The method includes forming a metal layer over a substrate and forming at least one barrier layer. The forming of the barrier layer includes depositing a solution comprising a metal complex over the substrate and at least partially decomposing of the ligand of the metal complex.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 11, 2016
    Inventor: Ravi Joshi
  • Publication number: 20150371942
    Abstract: In various embodiments a method for manufacturing a metallization layer on a substrate is provided, wherein the method may include forming a plurality of groups of nanotubes over a substrate, wherein the groups of nanotubes may be arranged such that a portion of the substrate is exposed and forming metal over the exposed portion of the substrate between the plurality of groups of nanotubes.
    Type: Application
    Filed: August 27, 2015
    Publication date: December 24, 2015
    Inventors: Ravi Joshi, Juergen Steinbrenner
  • Publication number: 20150348824
    Abstract: According to various embodiments, a semiconductor wafer may include: a semiconductor body including an integrated circuit structure; and at least one tetrahedral amorphous carbon layer formed at least one of over or in the integrated circuit structure, the at least one tetrahedral amorphous carbon layer may include a substance amount fraction of sp3-hybridized carbon of larger than approximately 0.4 and a substance amount fraction of hydrogen smaller than approximately 0.1.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 3, 2015
    Applicant: Infineon Technologies AG
    Inventors: Matthias Kuenle, Gerhard Schmidt, Martin Sporn, Markus Kahn, Juergen Steinbrenner, Ravi Joshi
  • Publication number: 20150311157
    Abstract: In various embodiments a method for manufacturing a metallization layer on a substrate is provided, wherein the method may include forming a plurality of groups of nanotubes over a substrate, wherein the groups of nanotubes may be arranged such that a portion of the substrate is exposed and forming metal over the exposed portion of the substrate between the plurality of groups of nanotubes.
    Type: Application
    Filed: June 15, 2015
    Publication date: October 29, 2015
    Inventors: Ravi Joshi, Juergen Steinbrenner
  • Patent number: 9159669
    Abstract: In various embodiments a method for manufacturing a metallization layer on a substrate is provided, wherein the method may include forming a plurality of groups of nanotubes over a substrate, wherein the groups of nanotubes may be arranged such that a portion of the substrate is exposed and forming metal over the exposed portion of the substrate between the plurality of groups of nanotubes.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: October 13, 2015
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Ravi Joshi, Juergen Steinbrenner
  • Publication number: 20150221735
    Abstract: In one aspect, a method of forming a trench in a semiconductor material includes forming a first dielectric layer on a semiconductor substrate. The first dielectric layer includes first openings. An epitaxial layer is grown on the semiconductor substrate by an epitaxial lateral overgrowth process. The first openings are filled by the epitaxial layer and the epitaxial layer is grown onto adjacent portions of the first dielectric layer so that part of the first dielectric layer is uncovered by the epitaxial layer and a gap forms between opposing sidewalls of the epitaxial layer over the part of the first dielectric layer that is uncovered by the epitaxial layer. The gap defines a first trench in the epitaxial layer that extends to the first dielectric layer.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 6, 2015
    Inventors: Ravi Joshi, Johannes Baumgartl, Martin Poelzl, Matthias Kuenle, Juergen Steinbrenner, Andreas Haghofer, Christoph Gruber, Georg Ehrentraut
  • Publication number: 20150214144
    Abstract: In various embodiments a method for manufacturing a metallization layer on a substrate is provided, wherein the method may include forming a plurality of groups of nanotubes over a substrate, wherein the groups of nanotubes may be arranged such that a portion of the substrate is exposed and forming metal over the exposed portion of the substrate between the plurality of groups of nanotubes.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 30, 2015
    Applicant: Infineon Technologies AG
    Inventors: Ravi Joshi, Juergen Steinbrenner
  • Publication number: 20050236730
    Abstract: Polyisocyanate-based reaction systems, a pultrusion process of those systems to produce reinforced matrix composites, and to composites produced thereby. The polyisocyanate-based systems are mixing activated reaction systems that include a polyol composition, an optional chain extender or crosslinker, and a polyisocyanate. The polyisocyanate-based systems exhibit improved processing characteristics in the manufacture of fiber reinforced thermoset composites via reactive pultrusion.
    Type: Application
    Filed: May 25, 2005
    Publication date: October 27, 2005
    Inventors: Ravi Joshi, Evan Cheolas
  • Publication number: 20050038222
    Abstract: Filament winding process based on the mixing initiated polymerization of an at least two-component resin system, the system comprising an organic polyisocyanate and a polyfunctional active hydrogen composition as the principle isocyanate reactive species. The invention further provides improved composite articles produced by the filament winding process.
    Type: Application
    Filed: September 21, 2004
    Publication date: February 17, 2005
    Inventors: Ravi Joshi, Evan Cheolas