Patents by Inventor Ravi K. Birla

Ravi K. Birla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10792145
    Abstract: In some embodiments, the present disclosure pertains to a method of fabricating an artificial heart muscle (AHM) patch. In some embodiments, the method includes obtaining and/or isolating cells from a subject. In some embodiments, the cells are primary cardiac cells. In some embodiments, the method further includes forming a scaffold. In some embodiments, the method includes seeding the cells in the fibrin gel scaffold. In some embodiments, the method includes culturing the cells seeded in the fibrin gel scaffold under conditions appropriate for the formation of an artificial heart muscle (AHM) patch.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: October 6, 2020
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventor: Ravi K. Birla
  • Publication number: 20190040360
    Abstract: In some embodiments, the present disclosure provides a method for fabricating a three-dimensional artificial cardiac patch construct. In some embodiments, such method includes the steps of coating a substrate with an organic polymer; allowing the organic polymer coating to air dry; mounting anchors on the organic polymer coating; and sterilizing the organic polymer coating and the anchors. In further embodiments, the method includes the steps of forming a biodegradable gel-based support scaffold on top of the organic polymer coating and seeding the biodegradable gel-based support scaffold with neonatal cardiac cells. In yet further embodiments, the method comprises culturing the neonatal cardiac cells in vitro to form a real cardiac layer, under culture conditions that are suitable for the cells to self-organize into a monolayer and detach from the substrate to form the three-dimensional cardiac patch.
    Type: Application
    Filed: September 6, 2018
    Publication date: February 7, 2019
    Applicant: University of Houston
    Inventor: Ravi K. Birla
  • Patent number: 10106776
    Abstract: In some embodiments, the present disclosure provides a method for fabricating a three-dimensional artificial cardiac patch construct. In some embodiments, such method includes the steps of coating a substrate with an organic polymer; allowing the organic polymer coating to air dry; mounting anchors on the organic polymer coating; and sterilizing the organic polymer coating and the anchors. In further embodiments, the method includes the steps of forming a biodegradable gel-based support scaffold on top of the organic polymer coating and seeding the biodegradable gel-based support scaffold with neonatal cardiac cells. In yet further embodiments, the method comprises culturing the neonatal cardiac cells in vitro to form a real cardiac layer, under culture conditions that are suitable for the cells to self-organize into a monolayer and detach from the substrate to form the three-dimensional cardiac patch.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: October 23, 2018
    Assignee: UNIVERSITY OF HOUSTON
    Inventor: Ravi K. Birla
  • Publication number: 20180042714
    Abstract: In some embodiments, the present disclosure pertains to a method of fabricating an artificial heart muscle (AHM) patch. In some embodiments, the method comprises obtaining and/or isolating cells from a subject. In some embodiments, the cells are primary cardiac cells. In some embodiments, the method further comprises forming a scaffold. In some embodiments, the method comprises seeding the cells in the fibrin gel scaffold. In some embodiments, the method comprises culturing the cells seeded in the fibrin gel scaffold under conditions appropriate for the formation of an artificial heart muscle (AHM) patch. In some embodiments, the present disclosure pertains to a method of fabricating a bioartificial heart (BAH). In some embodiments, the present disclosure pertains to a method of treatment of cardiac tissue injury in a subject in need thereof. In some embodiments, the method includes implanting the aforementioned artificial heart muscle patch in the injured area of the subject.
    Type: Application
    Filed: October 5, 2017
    Publication date: February 15, 2018
    Applicant: University of Houston System
    Inventor: Ravi K. Birla
  • Patent number: 9808336
    Abstract: In some embodiments, the present disclosure pertains to a method of fabricating an artificial heart muscle (AHM) patch. In some embodiments, the method includes obtaining and/or isolating cells from a subject. In some embodiments, the cells are primary cardiac cells. In some embodiments, the method further includes forming a scaffold. In some embodiments, the method includes seeding the cells in the fibrin gel scaffold. In some embodiments, the method includes culturing the cells seeded in the fibrin gel scaffold under conditions appropriate for the formation of an artificial heart muscle (AHM) patch. In some embodiments, the present disclosure pertains to a method of fabricating a bioartificial heart (BAH). In some embodiments, the present disclosure pertains to a method of treatment of cardiac tissue injury in a subject in need thereof. In some embodiments, the method includes implanting the aforementioned artificial heart muscle patch in the injured area of the subject.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: November 7, 2017
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventor: Ravi K. Birla
  • Publication number: 20150335417
    Abstract: In some embodiments, the present disclosure pertains to a method of fabricating an artificial heart muscle (AHM) patch. In some embodiments, the method comprises obtaining and/or isolating cells from a subject. In some embodiments, the cells are primary cardiac cells. In some embodiments, the method further comprises forming a scaffold. In some embodiments, the method comprises seeding the cells in the fibrin gel scaffold. In some embodiments, the method comprises culturing the cells seeded in the fibrin gel scaffold under conditions appropriate for the formation of an artificial heart muscle (AHM) patch. In some embodiments, the present disclosure pertains to a method of fabricating a bioartificial heart (BAH). In some embodiments, the present disclosure pertains to a method of treatment of cardiac tissue injury in a subject in need thereof. In some embodiments, the method includes implanting the aforementioned artificial heart muscle patch in the injured area of the subject.
    Type: Application
    Filed: May 1, 2015
    Publication date: November 26, 2015
    Applicant: University of Houston System
    Inventor: Ravi K. Birla
  • Publication number: 20140328806
    Abstract: In some embodiments, the present disclosure provides a method for fabricating a three-dimensional artificial cardiac patch construct. In some embodiments, such method includes the steps of coating a substrate with an organic polymer; allowing the organic polymer coating to air dry; mounting anchors on the organic polymer coating; and sterilizing the organic polymer coating and the anchors. In further embodiments, the method includes the steps of forming a biodegradable gel-based support scaffold on top of the organic polymer coating and seeding the biodegradable gel-based support scaffold with neonatal cardiac cells. In yet further embodiments, the method comprises culturing the neonatal cardiac cells in vitro to form a real cardiac layer, under culture conditions that are suitable for the cells to self-organize into a monolayer and detach from the substrate to form the three-dimensional cardiac patch.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 6, 2014
    Applicant: University of Houston
    Inventor: Ravi K. Birla
  • Patent number: 8236350
    Abstract: A biocompatible and biodegradable elastomeric polymer material, the polymer material comprising: glycerol and dodecanedioic acid, wherein the molar ratio of glycerol to dodecanedioic acid is from about 5:1 to about 1:5. Methods for using the biocompatible and biodegradable elastomeric polymer material comprises providing an PGD elastomeric polymer comprising glycerol and dodecanedioic acid, in a molar ratio of glycerol to dodecanedioic acid of about 1:1 and administering the PGD elastomeric polymer to a soft tissue defect site in needs thereof.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: August 7, 2012
    Assignee: The Regents of The University of Michigan
    Inventors: Francesco Migneco, Yen Chih Huang, Ravi K. Birla, Scott J. Hollister
  • Publication number: 20100196322
    Abstract: A biocompatible and biodegradable elastomeric polymer material, the polymer material comprising: glycerol and dodecanedioic acid, wherein the molar ratio of glycerol to dodecanedioic acid is from about 5:1 to about 1:5. Methods for using the biocompatible and biodegradable elastomeric polymer material comprises providing an PGD elastomeric polymer comprising glycerol and dodecanedioic acid, in a molar ratio of glycerol to dodecanedioic acid of about 1:1 and administering the PGD elastomeric polymer to a soft tissue defect site in needs thereof.
    Type: Application
    Filed: July 31, 2009
    Publication date: August 5, 2010
    Inventors: Francesco Migneco, Yen Chih Huang, Ravi K. Birla, Scott J. Hollister
  • Patent number: 7338798
    Abstract: A system and method for forming a cardiac muscle construct are provided, the system including a substrate and cardiac cells provided on the substrate in the absence of a scaffold. The cardiac cells are cultured in vitro under conditions to allow the cells to become confluent and detach from the substrate to form a three-dimensional cardiac muscle construct.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: March 4, 2008
    Assignee: The Regents of the University of Michigan
    Inventors: Robert G. Dennis, Ravi K. Birla, Marvin O. Boluyl, Ellen M. Arruda, Keith R. Baar, Gregory H. Borschel
  • Publication number: 20040132184
    Abstract: A system and method for forming a cardiac muscle construct are provided, the system including a substrate and cardiac cells provided on the substrate in the absence of a scaffold. The cardiac cells are cultured in vitro under conditions to allow the cells to become confluent and detach from the substrate to form a three-dimensional cardiac muscle construct.
    Type: Application
    Filed: September 16, 2003
    Publication date: July 8, 2004
    Applicant: The Regents of the University of Michigan
    Inventors: Robert G. Dennis, Ravi K. Birla, Marvin O. Boluyl, Ellen M. Arruda, Keith R. Baar, Gregory H. Borschel