Patents by Inventor Ravi Soni

Ravi Soni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220381381
    Abstract: A fluid fitting includes a nut, a sleeve, and a union. The union and the nut may include corresponding stops and corresponding markings. Corresponding stops and corresponding marking may engage with each other when the nut is sufficiently connected with the union. A method of connecting a fitting includes connecting a sleeve of the fitting with a nut of the fitting, connecting the nut with a union, rotating at least one of the nut and the union until a stop of the nut engages a stop of the union, restricting over torque via the stop of the nut and the stop of the union, and verifying a sufficient connection if first markings of the nut align with second markings of the union.
    Type: Application
    Filed: April 11, 2022
    Publication date: December 1, 2022
    Inventors: Christopher T. Cantrell, Gregory Kiernan, Ravi Soni, Eric R. Marx
  • Patent number: 11507822
    Abstract: Systems and methods to generate artificial intelligence models with synthetic data are disclosed. An example system includes a deep neural network (DNN) generator to generate a first DNN model using first real data. The example system includes a synthetic data generator to generate first synthetic data from the first real data, the first synthetic data to be used by the DNN generator to generate a second DNN model. The example system includes an evaluator to evaluate performance of the first and second DNN models to determine whether to generate second synthetic data. The example system includes a synthetic data aggregator to aggregate third synthetic data and fourth synthetic data from a plurality of sites to form a synthetic data set. The example system includes an artificial intelligence model deployment processor to deploy an artificial intelligence model trained and tested using the synthetic data set.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: November 22, 2022
    Assignee: General Electric Company
    Inventors: Ravi Soni, Min Zhang, Gopal Avinash
  • Patent number: 11475250
    Abstract: Systems and techniques for providing concurrent image and corresponding multi-channel auxiliary data generation for a generative model are presented. In one example, a system generates synthetic multi-channel data associated with a synthetic version of imaging data. The system also predicts multi-channel imaging data and the synthetic multi-channel data with a first predicted class set or a second predicted class set. Furthermore, the system employs the first predicted class set or the second predicted class set for the synthetic multi-channel data to train a generative adversarial network model.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: October 18, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ravi Soni, Gopal B. Avinash, Min Zhang
  • Publication number: 20220284570
    Abstract: Methods and systems are provided for inferring thickness and volume of one or more object classes of interest in two-dimensional (2D) medical images, using deep neural networks. In an exemplary embodiment, a thickness of an object class of interest may be inferred by acquiring a 2D medical image, extracting features from the 2D medical image, mapping the features to a segmentation mask for an object class of interest using a first convolutional neural network (CNN), mapping the features to a thickness mask for the object class of interest using a second CNN, wherein the thickness mask indicates a thickness of the object class of interest at each pixel of a plurality of pixels of the 2D medical image; and determining a volume of the object class of interest based on the thickness mask and the segmentation mask.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Inventors: Tao Tan, Máté Fejes, Gopal Avinash, Ravi Soni, Bipul Das, Rakesh Mullick, Pál Tegzes, Lehel Ferenczi, Vikram Melapudi, Krishna Seetharam Shriram
  • Publication number: 20220284579
    Abstract: Apparatus, systems, and methods to improve imaging quality control, image processing, identification of findings, and generation of notification at or near a point of care are disclosed and described. An example imaging apparatus includes a processor to at least: process the first image data using a trained learning network to generate a first analysis of the first image data; identify a clinical finding in the first image data based on the first analysis; compare the first analysis to a second analysis, the second analysis generated from second image data obtained in a second image acquisition; and, when comparing identifies a change between the first analysis and the second analysis, generate a notification at the imaging apparatus regarding the clinical finding to trigger a responsive action.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: Katelyn Rose Nye, Gireesha Rao, Gopal Avinash, Ravi Soni
  • Patent number: 11409752
    Abstract: A web-based tool performs records matching in response to a freeform text input, to find highly contextually-related sentences in a corpus of records. Each sentence in the corpus is converted into a full-size vector representation, and each vector's angle within space is measured. Each full-size vector is compressed to a smaller vector and a loss function is used to preserve for each vector the angle within the lower-dimensional space that existed for the higher-dimensional vector. Full-size and reduced vector representations are generated from the freeform text input. The reduced-size vector of the input is compared to those of the corpus of text to identify, in real-time, a set of vector nearest neighbors that includes, with high accuracy, representations of all records in the corpus similar to the input. Full-size vectors for the nearest neighbors are in turn retrieved and compared to the input, and ranked results are generated.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: August 9, 2022
    Assignee: Casetext, Inc.
    Inventors: Javed Qadrud-Din, Ryan Walker, Ravi Soni, Marcin Gajek, Gabriel Pack, Akhil Rangaraj
  • Patent number: 11404145
    Abstract: Systems, apparatus, instructions, and methods for medical machine time-series event data processing are disclosed. An example time series event data processing apparatus includes memory storing instructions and one-dimensional time series healthcare-related data; and at least one processor. The example at least one processor is to: execute artificial intelligence model(s) trained on aggregated time series data to at least one of a) predict a future medical machine event, b) detect a medical machine event, or c) classify the medical machine event using the one-dimensional time series healthcare-related data; when the artificial intelligence model(s) are executed to predict the future medical machine event, output an alert related to the predicted future medical machine event to trigger a next action; and when the artificial intelligence model(s) are executed to detect and/or classify the medical machine event, label the medical machine event and output the labeled event to trigger the next action.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: August 2, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Venkata Ratna Saripalli, Gopal Avinash, Min Zhang, Ravi Soni, Jiahui Guan, Dibyajyoti Pati, Zili Ma
  • Patent number: 11306852
    Abstract: A fluid fitting includes a nut, a sleeve, and a union. The union and the nut may include corresponding stops. Corresponding stops may engage with each other when the nut is sufficiently connected with the union. A method of designing a fluid fitting including a union may include determining a gauge diameter of the union, determining a plane perpendicular to an axis of rotation of the union that includes a center point of the gauge diameter, determining a point of intersection of threads of the union with the perpendicular plane, and/or determining a position of a stop according to an angle from the point of intersection.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: April 19, 2022
    Assignee: Eaton Intelligent Power Limited
    Inventors: Christopher T. Cantrell, Gregory Kiernan, Ravi Soni
  • Patent number: 11300234
    Abstract: A fluid fitting includes a nut, a sleeve, and a union. The union and the nut may include corresponding stops and corresponding markings. Corresponding stops and corresponding marking may engage with each other when the nut is sufficiently connected with the union. A method of connecting a fitting includes connecting a sleeve of the fitting with a nut of the fitting, connecting the nut with a union, rotating at least one of the nut and the union until a stop of the nut engages a stop of the union, restricting over torque via the stop of the nut and the stop of the union, and verifying a sufficient connection if first markings of the nut align with second markings of the union.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: April 12, 2022
    Assignee: Eaton Intelligent Power Limited
    Inventors: Christopher T. Cantrell, Gregory Kiernan, Ravi Soni, Eric R. Marx
  • Publication number: 20220101048
    Abstract: Techniques are described for generating mono-modality training image data from multi-modality image data and using the mono-modality training image data to train and develop mono-modality image inferencing models. A method embodiment comprises generating, by a system comprising a processor, a synthetic 2D image from a 3D image of a first capture modality, wherein the synthetic 2D image corresponds to a 2D version of the 3D image in a second capture modality, and wherein the 3D image and the synthetic 2D image depict a same anatomical region of a same patient. The method further comprises transferring, by the system, ground truth data for the 3D image to the synthetic 2D image. In some embodiments, the method further comprises employing the synthetic 2D image to facilitate transfer of the ground truth data to a native 2D image captured of the same anatomical region of the same patient using the second capture modality.
    Type: Application
    Filed: November 10, 2020
    Publication date: March 31, 2022
    Inventors: Tao Tan, Gopal B. Avinash, Máté Fejes, Ravi Soni, Dániel Attila Szabó, Rakesh Mullick, Vikram Melapudi, Krishna Seetharam Shriram, Sohan Rashmi Ranjan, Bipul Das, Utkarsh Agrawal, László Ruskó, Zita Herczeg, Barbara Darázs
  • Publication number: 20220058437
    Abstract: Systems and techniques that facilitate synthetic training data generation for improved machine learning generalizability are provided. In various embodiments, an element augmentation component can generate a set of preliminary annotated training images based on an annotated source image. In various aspects, a preliminary annotated training image can be formed by inserting at least one element of interest or at least one background element into the annotated source image. In various instances, a modality augmentation component can generate a set of intermediate annotated training images based on the set of preliminary annotated training images. In various cases, an intermediate annotated training image can be formed by varying at least one modality-based characteristic of a preliminary annotated training image. In various aspects, a geometry augmentation component can generate a set of deployable annotated training images based on the set of intermediate annotated training images.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 24, 2022
    Inventors: Ravi Soni, Tao Tan, Gopal B. Avinash, Dibyaiyoti Pati, Hans Krupakar, Venkata Ratnam Saripalli
  • Publication number: 20210350186
    Abstract: An x-ray image laterality detection system is provided. The x-ray image laterality detection system includes a detection computing device. The processor of the computing device is programmed to execute a neural network model for analyzing x-ray images, wherein the neural network model is trained with training x-ray images as inputs and observed laterality classes associated with the training x-ray images as outputs. The process is also programmed to receive an unclassified x-ray image, analyze the unclassified x-ray image using the neural network model, and assign a laterality class to the unclassified x-ray image. If the assigned laterality class is not target laterality, the processor is programmed to adjust the unclassified x-ray image to derive a corrected x-ray image having the target laterality and output the corrected x-ray image. If the assigned laterality class is the target laterality, the processor is programmed to output the unclassified x-ray image.
    Type: Application
    Filed: July 26, 2021
    Publication date: November 11, 2021
    Inventors: Khaled Salem Younis, Ravi Soni, Katelyn Rose Nye, Gireesha Chinthamani Rao, John Michael Sabol, Yash N. Shah
  • Publication number: 20210279869
    Abstract: Techniques are provided for deep neural network (DNN) identification of realistic synthetic images generated using a generative adversarial network (GAN). According to an embodiment, a system is described that can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise, a first extraction component that extracts a subset of synthetic images classified as non-real like as opposed to real-like, wherein the subset of synthetic images were generated using a GAN model.
    Type: Application
    Filed: May 21, 2021
    Publication date: September 9, 2021
    Inventors: Ravi Soni, Min Zhang, Zili Ma, Gopal B. Avinash
  • Patent number: 11113577
    Abstract: An x-ray image laterality detection system is provided. The x-ray image laterality detection system includes a detection computing device. The processor of the computing device is programmed to execute a neural network model for analyzing x-ray images, wherein the neural network model is trained with training x-ray images as inputs and observed laterality classes associated with the training x-ray images as outputs. The process is also programmed to receive an unclassified x-ray image, analyze the unclassified x-ray image using the neural network model, and assign a laterality class to the unclassified x-ray image. If the assigned laterality class is not target laterality, the processor is programmed to adjust the unclassified x-ray image to derive a corrected x-ray image having the target laterality and output the corrected x-ray image. If the assigned laterality class is the target laterality, the processor is programmed to output the unclassified x-ray image.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: September 7, 2021
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Khaled Salem Younis, Ravi Soni, Katelyn Rose Nye, Gireesha Chinthamani Rao, John Michael Sabol, Yash N. Shah
  • Publication number: 20210271931
    Abstract: An x-ray image laterality detection system is provided. The x-ray image laterality detection system includes a detection computing device. The processor of the computing device is programmed to execute a neural network model for analyzing x-ray images, wherein the neural network model is trained with training x-ray images as inputs and observed laterality classes associated with the training x-ray images as outputs. The process is also programmed to receive an unclassified x-ray image, analyze the unclassified x-ray image using the neural network model, and assign a laterality class to the unclassified x-ray image. If the assigned laterality class is not target laterality, the processor is programmed to adjust the unclassified x-ray image to derive a corrected x-ray image having the target laterality and output the corrected x-ray image. If the assigned laterality class is the target laterality, the processor is programmed to output the unclassified x-ray image.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventors: KHALED SALEM YOUNIS, Ravi Soni, Katelyn Rose Nye, Gireesha Chinthamani Rao, John Michael Sabol, Yash N. Shah
  • Publication number: 20210232866
    Abstract: Systems and techniques for providing concurrent image and corresponding multi-channel auxiliary data generation for a generative model are presented. In one example, a system generates synthetic multi-channel data associated with a synthetic version of imaging data. The system also predicts multi-channel imaging data and the synthetic multi-channel data with a first predicted class set or a second predicted class set. Furthermore, the system employs the first predicted class set or the second predicted class set for the synthetic multi-channel data to train a generative adversarial network model.
    Type: Application
    Filed: April 14, 2021
    Publication date: July 29, 2021
    Inventors: Ravi Soni, Gopal B. Avinash, Min Zhang
  • Patent number: 11049239
    Abstract: Techniques are provided for deep neural network (DNN) identification of realistic synthetic images generated using a generative adversarial network (GAN). According to an embodiment, a system is described that can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise, a first extraction component that extracts a subset of synthetic images classified as non-real like as opposed to real-like, wherein the subset of synthetic images were generated using a GAN model. The computer executable components can further comprise a training component that employs the subset of synthetic images and real images to train a DNN network model to classify synthetic images generated using the GAN model as either real-like or non-real like.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: June 29, 2021
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Ravi Soni, Min Zhang, Zili Ma, Gopal B. Avinash
  • Publication number: 20210166351
    Abstract: An x-ray image orientation detection and correction system including a detection and correction computing device is provided. The processor of the computing device is programmed to execute a neural network model that is trained with training x-ray images as inputs and observed x-ray images as outputs. The observed x-ray images are the training x-ray images adjusted to have a reference orientation. The processor is further programmed to receive an unclassified x-ray image, analyze the unclassified x-ray image using the neural network model, and assign an orientation class to the unclassified x-ray image. If the assigned orientation class is not the reference orientation, the processor is programmed to adjust an orientation of the unclassified x-ray image using the neural network model, and output a corrected x-ray image. If the assigned orientation class is the reference orientation, the processor is programmed to output the unclassified x-ray image.
    Type: Application
    Filed: November 29, 2019
    Publication date: June 3, 2021
    Inventors: Khaled Salem Younis, Katelyn Rose Nye, Gireesha Chinthamani Rao, German Guillermo Vera Gonzalez, Gopal B. Avinash, Ravi Soni, Teri Lynn Fischer, John Michael Sabol
  • Patent number: 11010642
    Abstract: Systems and techniques for providing concurrent image and corresponding multi-channel auxiliary data generation for a generative model are presented. In one example, a system generates synthetic multi-channel data associated with a synthetic version of imaging data. The system also predicts multi-channel imaging data and the synthetic multi-channel data with a first predicted class set or a second predicted class set. Furthermore, the system employs the first predicted class set or the second predicted class set for the synthetic multi-channel data to train a generative adversarial network model.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: May 18, 2021
    Assignee: General Electric Company
    Inventors: Ravi Soni, Gopal B. Avinash, Min Zhang
  • Patent number: 10883636
    Abstract: A fitting (30) for fluid communication with a fluid conduit includes a first fluid conduit connection portion (42), a second fluid conduit connection portion (42?), a header (60) disposed axially between the first fluid conduit connection portion and the second fluid conduit connection portion, and a socket (70). A fluid fitting may include a nipple (40), a radial projection (48) connected to the nipple, and an axial protrusion (120) extending from the radial projection. The axial protrusion may be configured to protrude into an axial end of a fluid conduit (80). A fluid fitting may include a fluid conduit connection portion (42) and a dynamic tip (130) connected to an end of the fluid conduit connection portion. The dynamic tip may be configured to expand in response to an increase in fluid pressure.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: January 5, 2021
    Assignee: Eaton Intelligent Power Limited
    Inventors: Patrick A. Schilling, Sumit Joshi, Mayank Garg, Srinivasan K. Raghavendra, Sergey S. Kotcharov, Lee Fausneaucht, Joe Natter, Ravi Soni, Devashish R. Murkya