Patents by Inventor Raymond Sydney Pengelly

Raymond Sydney Pengelly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9564864
    Abstract: The disclosure relates to an enhanced Doherty amplifier that provides significant performance improvements over conventional Doherty amplifiers. The enhanced Doherty amplifier includes a power splitter, combining node, a carrier path, and a peaking path. The power splitter is configured to receive an input signal and split the input signal into a carrier signal provided at a carrier splitter output and a peaking signal provided at a peaking splitter output. The carrier path includes carrier power amplifier circuitry, a carrier input network coupled between the carrier splitter output and the carrier power amplifier circuitry, and a carrier output network coupled between the carrier power amplifier circuitry and the Doherty combining node.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: February 7, 2017
    Assignee: Cree, Inc.
    Inventor: Raymond Sydney Pengelly
  • Publication number: 20140240039
    Abstract: The disclosure relates to an enhanced Doherty amplifier that provides significant performance improvements over conventional Doherty amplifiers. The enhanced Doherty amplifier includes a power splitter, combining node, a carrier path, and a peaking path. The power splitter is configured to receive an input signal and split the input signal into a carrier signal provided at a carrier splitter output and a peaking signal provided at a peaking splitter output. The carrier path includes carrier power amplifier circuitry, a carrier input network coupled between the carrier splitter output and the carrier power amplifier circuitry, and a carrier output network coupled between the carrier power amplifier circuitry and the Doherty combining node.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 28, 2014
    Applicant: Cree, Inc.
    Inventor: Raymond Sydney Pengelly
  • Patent number: 8749306
    Abstract: The disclosure relates to an enhanced Doherty amplifier that provides significant performance improvements over conventional Doherty amplifiers. The enhanced Doherty amplifier includes a power splitter, combining node, a carrier path, and a peaking path. The power splitter is configured to receive an input signal and split the input signal into a carrier signal provided at a carrier splitter output and a peaking signal provided at a peaking splitter output. The carrier path includes carrier power amplifier circuitry, a carrier input network coupled between the carrier splitter output and the carrier power amplifier circuitry, and a carrier output network coupled between the carrier power amplifier circuitry and the Doherty combining node.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: June 10, 2014
    Assignee: Cree, Inc.
    Inventor: Raymond Sydney Pengelly
  • Patent number: 8611834
    Abstract: The present disclosure relates to transmission circuitry of a wireless communication device. The transmission circuitry includes power amplifier circuitry, an output matching network, and impedance control circuitry. The power amplifier circuitry amplifies a radio frequency (RF) input signal to provide an amplified RF output signal, which is passed through the output matching network and transmitted via one or more antennas. As the center frequency of the RF input signal and conditions of operating parameters change, the impedance control circuitry adjusts the values of one or more variable impedance elements of the output matching network in a desired fashion. The values of the variable impedance elements are adjusted such that the output matching network concurrently and dynamically presents the desired load impedances at the center frequency and at one or more harmonics of the RF input signal to achieve a given performance specification.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: December 17, 2013
    Assignee: Cree, Inc.
    Inventors: Christopher Harris, Raymond Sydney Pengelly
  • Publication number: 20120235734
    Abstract: The disclosure relates to an enhanced Doherty amplifier that provides significant performance improvements over conventional Doherty amplifiers. The enhanced Doherty amplifier includes a power splitter, combining node, a carrier path, and a peaking path. The power splitter is configured to receive an input signal and split the input signal into a carrier signal provided at a carrier splitter output and a peaking signal provided at a peaking splitter output. The carrier path includes carrier power amplifier circuitry, a carrier input network coupled between the carrier splitter output and the carrier power amplifier circuitry, and a carrier output network coupled between the carrier power amplifier circuitry and the Doherty combining node.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 20, 2012
    Applicant: CREE, INC.
    Inventor: Raymond Sydney Pengelly
  • Publication number: 20120105147
    Abstract: The present disclosure relates to transmission circuitry of a wireless communication device. The transmission circuitry includes power amplifier circuitry, an output matching network, and impedance control circuitry. The power amplifier circuitry amplifies a radio frequency (RF) input signal to provide an amplified RF output signal, which is passed through the output matching network and transmitted via one or more antennas. As the center frequency of the RF input signal and conditions of operating parameters change, the impedance control circuitry adjusts the values of one or more variable impedance elements of the output matching network in a desired fashion. The values of the variable impedance elements are adjusted such that the output matching network concurrently and dynamically presents the desired load impedances at the center frequency and at one or more harmonics of the RF input signal to achieve a given performance specification.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Applicant: CREE, INC.
    Inventors: Christopher Harris, Raymond Sydney Pengelly
  • Patent number: 7936212
    Abstract: A power amplifier circuit includes an unequal power splitter that splits an input signal using an unequal power split and provides a first power level signal and a second power level signal. A first amplifier path includes a first transistor amplifier that amplifies the first power level signal, and a second amplifier path includes a second transistor amplifier that amplifies the second power level signal. The second transistor amplifier is configured to turn on at a different power level of the input signal than the first transistor amplifier. An unequal combiner combines the amplified first power level signal and the amplified second power level signal.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: May 3, 2011
    Assignee: Cree, Inc.
    Inventor: Raymond Sydney Pengelly
  • Patent number: 7764120
    Abstract: A power amplifier circuit includes a power splitter that splits an input signal into a plurality of component input signals. At least two sets of transistor amplifiers are each coupled in parallel to the power splitter to receive and amplify different ones of the component input signals to generate amplified component output signals. The two transistor amplifiers of each set of transistor amplifiers are configured to turn on at different power levels of the input signal relative to each other. A combiner is configured to receive and combine the amplified component output signals from the at least two sets of transistor amplifiers into an output signal. An integrated circuit package encloses the power splitter, the at least two sets of transistor amplifiers, and the combiner.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: July 27, 2010
    Assignee: Cree, Inc.
    Inventor: Raymond Sydney Pengelly
  • Publication number: 20100045385
    Abstract: A power amplifier circuit includes a power splitter that splits an input signal into a plurality of component input signals. At least two sets of transistor amplifiers are each coupled in parallel to the power splitter to receive and amplify different ones of the component input signals to generate amplified component output signals. The two transistor amplifiers of each set of transistor amplifiers are configured to turn on at different power levels of the input signal relative to each other. A combiner is configured to receive and combine the amplified component output signals from the at least two sets of transistor amplifiers into an output signal. An integrated circuit package encloses the power splitter, the at least two sets of transistor amplifiers, and the combiner.
    Type: Application
    Filed: August 19, 2008
    Publication date: February 25, 2010
    Inventor: Raymond Sydney Pengelly
  • Publication number: 20090278599
    Abstract: A power amplifier circuit includes an unequal power splitter that splits an input signal using an unequal power split and provides a first power level signal and a second power level signal. A first amplifier path includes a first transistor amplifier that amplifies the first power level signal, and a second amplifier path includes a second transistor amplifier that amplifies the second power level signal. The second transistor amplifier is configured to turn on at a different power level of the input signal than the first transistor amplifier. An unequal combiner combines the amplified first power level signal and the amplified second power level signal.
    Type: Application
    Filed: May 9, 2008
    Publication date: November 12, 2009
    Inventor: Raymond Sydney Pengelly
  • Patent number: 7368971
    Abstract: High power, high frequency switches include a transmission line having at least three portions that are serially coupled between an input port and an output port to define at least two nodes and to carry a high power, high frequency signal between the input port and the output port. First and second power transistors are provided. At least a third power transistor also is provided. The controlling electrode(s) (gate) of the first, second and/or third power transistor(s) are responsive to a switch control input. The controlled electrodes (source/drain) of a respective one of the first and second power transistors, and of a respective one of the third power transistor(s) are serially coupled between a respective one of the at least two nodes and a reference voltage. The power transistors may be silicon carbide MESFETs.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: May 6, 2008
    Assignee: Cree, Inc.
    Inventor: Raymond Sydney Pengelly
  • Patent number: 6819184
    Abstract: The linearity of a transistor amplifier comprising a plurality of transistors operating parallel is improved by reducing the odd order transconductance derivatives of signals generated by the transistors. The transistors can be provided in groups with each group having a different bias voltage applied thereto or each group of transistors can have a different input signal applied thereto. The groups of transistors can have different physical parameters such as the width to length ratio of gates in field effect transistors and threshold voltages for the transistors.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: November 16, 2004
    Assignee: Cree Microwave, Inc.
    Inventors: Raymond Sydney Pengelly, Simon Maurice Wood, John Phillip Quinn
  • Patent number: 6798295
    Abstract: Disclosed are a multi-chip power amplifier comprising a plurality chips with each chip being a transistor amplifier, and a housing in which all of the semiconductor chips are mounted. A plurality of input leads extend into the housing and a plurality of output leads extend from the housing. A plurality of first matching networks couple a semiconductor chip to an input lead and a plurality of second matching networks couple each semiconductor chip to an output lead whereby each chip has its own input lead and output lead. By providing all amplifier chips within a single housing with matching networks within the housing coupling the chips to the input and output leads, manufacturing cost is reduced and the overall package footprint on a mounting substrate is reduced. Further, the close proximity of the chips within the housing reduces phase differences among signals in the semiconductor chips.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: September 28, 2004
    Assignee: Cree Microwave, Inc.
    Inventors: Raymond Sydney Pengelly, Simon Maurice Wood, John Phillip Quinn
  • Patent number: 6791417
    Abstract: An RF power amplifier circuit for amplifying an RF signal over a broad range of power with improved efficiency includes a carrier amplifier for amplifying an RF signal over a first range of power and with a power saturation level below the maximum of the broad range of power is disclosed. A plurality of peak amplifiers are connected in parallel with the carrier amplifier with each of the peak amplifiers being biased to sequentially provide an amplified output signal after the carrier amplifier approaches saturation. The input signal is applied through a signal splitter to the carrier amplifier and the plurality of peak amplifiers, and an output for receiving amplified output signals from the carrier amplifier and the plurality of peak amplifiers includes a resistive load R/2. The split input signal is applied through a 90° transformer to the carrier amplifier, and the outputs of the peak amplifiers are applied through 90° transformers to a output load.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: September 14, 2004
    Assignee: Cree Microwave, Inc.
    Inventors: Raymond Sydney Pengelly, Simon Maurice Wood
  • Publication number: 20040113697
    Abstract: Disclosed are a multi-chip power amplifier comprising a plurality chips with each chip being a transistor amplifier, and a housing in which all of the semiconductor chips are mounted. A plurality of input leads extend into the housing and a plurality of output leads extend from the housing. A plurality of first matching networks couple a semiconductor chip to an input lead and a plurality of second matching networks couple each semiconductor chip to an output lead whereby each chip has its own input lead and output lead. By providing all amplifier chips within a single housing with matching networks within the housing coupling the chips to the input and output leads, manufacturing cost is reduced and the overall package footprint on a mounting substrate is reduced. Further, the close proximity of the chips within the housing reduces phase differences among signals in the semiconductor chips.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Applicant: Cree Microwave, Inc.
    Inventors: Raymond Sydney Pengelly, Simon Maurice Wood, John Phillip Quinn
  • Patent number: 6737922
    Abstract: An RF power amplifier circuit for amplifying an RF signal over a broad range of power with improved efficiency includes a carrier amplifier for amplifying an RF signal over a first range of power and with a power saturation level below the maximum of the broad range of power is disclosed. One or more peak amplifiers are connected in parallel with the carrier amplifier with each of the peak amplifiers being biased to sequentially provide an amplified output signal after the carrier amplifier approaches saturation. The input signal is applied through a signal splitter to the carrier amplifier and the plurality of peak amplifiers, and an output for receiving amplified output signals from the carrier amplifier and the plurality of peak amplifiers includes a resistive load R/2. The split input signal is applied through a 90° transformer to the carrier amplifier, and the outputs of the peak amplifiers are applied through 90° transformers to a output load.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: May 18, 2004
    Assignee: Cree Microwave, Inc.
    Inventors: Raymond Sydney Pengelly, Simon Maurice Wood
  • Publication number: 20040085132
    Abstract: The linearity of a transistor amplifier comprising a plurality of transistors operating parallel is improved by reducing the odd order transconductance derivatives of signals generated by the transistors. The transistors can be provided in groups with each group having a different bias voltage applied thereto or each group of transistors can have a different input signal applied thereto. The groups of transistors can have different physical parameters such as the width to length ratio of gates in field effect transistors and threshold voltages for the transistors.
    Type: Application
    Filed: November 6, 2002
    Publication date: May 6, 2004
    Applicant: Cree Microwave, Inc.
    Inventors: Raymond Sydney Pengelly, Simon Maurice Wood, John Phillip Quinn
  • Patent number: 6700444
    Abstract: An RF power amplifier for amplifying an RF signal over a broad range of power with improved efficiency includes a main amplifier for amplifying an RF signal over a first range of power and with a power saturation level below the maximum of the broad range of power. A plurality of auxiliary amplifiers are connected in parallel with the main amplifier with each of the auxiliary amplifiers being biased to sequentially provide an amplified output signal after the main amplifier approaches saturation. The input signal is applied through a signal splitter to the main amplifier and the plurality of auxiliary amplifiers, and an output for receiving amplified output signals from the main amplifier and the plurality of auxiliary amplifiers includes a resistive load R/2. The split input signal is applied through a 90° transformer to the main amplifier, and the outputs of the auxiliary amplifiers are applied through 90° transformers to a output load.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: March 2, 2004
    Assignee: Cree Microwave, Inc.
    Inventor: Raymond Sydney Pengelly
  • Publication number: 20030210096
    Abstract: An RF power amplifier circuit for amplifying an RF signal over a broad range of power with improved efficiency includes a carrier amplifier for amplifying an RF signal over a first range of power and with a power saturation level below the maximum of the broad range of power is disclosed. A plurality of peak amplifiers are connected in parallel with the carrier amplifier with each of the peak amplifiers being biased to sequentially provide an amplified output signal after the carrier amplifier approaches saturation. The input signal is applied through a signal splitter to the carrier amplifier and the plurality of peak amplifiers, and an output for receiving amplified output signals from the carrier amplifier and the plurality of peak amplifiers includes a resistive load R/2. The split input signal is applied through a 90° transformer to the carrier amplifier, and the outputs of the peak amplifiers are applied through 90° transformers to a output load.
    Type: Application
    Filed: May 5, 2003
    Publication date: November 13, 2003
    Applicant: Cree Microwave, Inc.
    Inventors: Raymond Sydney Pengelly, Simon Maurice Wood
  • Publication number: 20030201833
    Abstract: An RF power amplifier circuit for amplifying an RF signal over a broad range of power with improved efficiency includes a carrier amplifier for amplifying an RF signal over a first range of power and with a power saturation level below the maximum of the broad range of power is disclosed. One or more peak amplifiers are connected in parallel with the carrier amplifier with each of the peak amplifiers being biased to sequentially provide an amplified output signal after the carrier amplifier approaches saturation. The input signal is applied through a signal splitter to the carrier amplifier and the plurality of peak amplifiers, and an output for receiving amplified output signals from the carrier amplifier and the plurality of peak amplifiers includes a resistive load R/2. The split input signal is applied through a 90° transformer to the carrier amplifier, and the outputs of the peak amplifiers are applied through 90° transformers to a output load.
    Type: Application
    Filed: May 5, 2003
    Publication date: October 30, 2003
    Applicant: Cree Microwave, Inc.
    Inventors: Raymond Sydney Pengelly, Simon Maurice Wood