Patents by Inventor Rebecca BORRELLI

Rebecca BORRELLI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230347596
    Abstract: Methods of forming a mirror by bonding a faceplate to a core structure using adhesive formulations that include: (1) a binder comprising 40 to 60 weight % monoaluminum phosphate and 40 to 60 weight % water, the binder constituting 25 to 35 weight % of the adhesive formulation and, (2) a composition that includes a first set of particles having a coefficient of thermal expansion equal to or less than 0.05 ppm/° C. and diameters between 1 to 60 micrometers and a second set of particles having a coefficient of thermal expansion equal to or less than 0.05 ppm/° C. and diameters between 0.05 to 1 micrometers, the first set of particles constituting 80 to 85 weight % of the composition, the second set of particles constituting 15 to 20 weight % of the composition; the composition constituting 65 to 75 weigh % of the adhesive formulation.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Inventors: Tukaram HATWAR, Rebecca BORRELLI, Stephen OLIVER, James T. MOONEY
  • Publication number: 20230350109
    Abstract: Methods of forming a mirror by bonding a faceplate to a core structure using adhesive formulations that include fused silica particles having diameters that range between 1 to 60 micrometers with an average diameter of the silica particles being between 8 to 10 micrometers. The adhesive formulation further includes an activator including 25 to 50 weight % sodium silicate, 25 to 50 weight % sodium hydroxide and a liquid. The fused silica particles constitute 70 to 80 weight % of the adhesive formulation and the activator constitute 20 to 30 weight % of the adhesive formulation.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Inventors: Tukaram HATWAR, Rebecca BORRELLI, Stephen OLIVER, James T. MOONEY
  • Publication number: 20230349042
    Abstract: Methods of producing an optical surface atop an exterior of a substrate that includes smoothing the exterior using an ALD process to sequentially deposit ALD layers to produce one or more ALD films that fill spaces between spaced-apart asperities existing on the exterior, and thereafter depositing a reflective material on the smoothed exterior of the substrate to produce the optical surface. The smoothing resulting from depositing the ALD film on the exterior of the substrate causes the grain size of the reflective material to be reduced in comparison to the grain size that would exists without having deposited the ALD film on the exterior of the substrate. The smoothing is sufficient to cause a reduction in grain size that results in a reduction in plasmon absorption in the optical surface in comparison to the plasmon absorption that would otherwise exist without having reduced the grain size of the reflective material.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Inventors: James THROCKMORTON, Tyler MYERS, Rebecca BORRELLI, Malcolm O’SULLIVAN, Tukaram HATWAR, Steven M. GEORGE
  • Patent number: 11780173
    Abstract: Methods of forming a mirror by bonding a faceplate to a core structure using adhesive formulations that include: (1) a binder comprising 40 to 60 weight % monoaluminum phosphate and 40 to 60 weight % water, the binder constituting 25 to 35 weight % of the adhesive formulation and, (2) a composition that includes a first set of particles having a coefficient of thermal expansion equal to or less than 0.05 ppm/° C. and diameters between 1 to 60 micrometers and a second set of particles having a coefficient of thermal expansion equal to or less than 0.05 ppm/° C. and diameters between 0.05 to 1 micrometers, the first set of particles constituting 80 to 85 weight % of the composition, the second set of particles constituting 15 to 20 weight % of the composition; the composition constituting 65 to 75 weigh % of the adhesive formulation.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: October 10, 2023
    Assignee: Eagle Technology, LLC
    Inventors: Tukaram Hatwar, Rebecca Borrelli, Stephen Oliver, James T. Mooney
  • Patent number: 11712844
    Abstract: The present invention is directed toward an additive manufacturing method for manufacturing silica-based structures that have a low linear cure shrinkage percentage and an ultra-low coefficient of thermal expansion. The structure may be constructed with a powder mixture that contains at least a first set of silica-based particles that are spherical and that have a first size, and a second set of submicron silica-based particles that are jagged, spherical, or both jagged and spherical. The silica-based powder mixture may be combined with a surfactant in order to create a slurry that can be used to create a 3D printed structure that has a low linear cure shrinkage percentage and an ultra-low coefficient of thermal expansion.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: August 1, 2023
    Assignee: Eagle Technology, LLC
    Inventors: Tukaram K. Hatwar, Rebecca Borrelli, Steve Oliver
  • Publication number: 20210402683
    Abstract: The present invention is directed toward an additive manufacturing method for manufacturing silica-based structures that have a low linear cure shrinkage percentage and an ultra-low coefficient of thermal expansion. The structure may be constructed with a powder mixture that contains at least a first set of silica-based particles that are spherical and that have a first size, and a second set of submicron silica-based particles that are jagged, spherical, or both jagged and spherical. The silica-based powder mixture may be combined with a surfactant in order to create a slurry that can be used to create a 3D printed structure that has a low linear cure shrinkage percentage and an ultra-low coefficient of thermal expansion.
    Type: Application
    Filed: June 24, 2020
    Publication date: December 30, 2021
    Inventors: Tukaram K. HATWAR, Rebecca BORRELLI, Steve OLIVER