Patents by Inventor Rebekah K. Feist

Rebekah K. Feist has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11718934
    Abstract: A method of preparing a resin infused random fiber mat including the step of forming a liquid dispersion mat of polymeric resin and fiber on a porous substrate.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: August 8, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Craig F. Gorin, Manesh Nadupparambil Sekharan, Jason A. Reese, Amit K. Chaudhary, Daniel L. Dermody, Kevin J. Bouck, Rebekah K. Feist, Thomas J. Parsons, David H. Bank
  • Publication number: 20210115202
    Abstract: A method of preparing a resin infused random fiber mat including the step of forming a liquid dispersion mat of polymeric resin and fiber on a porous substrate.
    Type: Application
    Filed: February 14, 2018
    Publication date: April 22, 2021
    Inventors: Craig F. Gorin, Manesh Nadupparambil Sekharan, Jason A. Reese, Amit K. Chaudhary, Daniel L. Dermody, Kevin J. Bouck, Rebekah K. Feist, Thomas J. Parsons, David H. Bank
  • Patent number: 9729103
    Abstract: A solar module (2) comprising: (a) a plurality of interconnected photovoltaic cells (4); (b) a forward protective layer (22); (c) a rearward protective layer (24); and (d) an reinforcement (10); wherein the reinforcement is integrally located within the solar module and extends from a location substantially proximate to the forward protective layer to a location substantially proximate to the rearward protective layer.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: August 8, 2017
    Assignee: Dow Global Technologies, LLC
    Inventors: Keith L. Kauffman, Kwanho Yang, Jie Feng, Hua Liu, Scott T. Burr, Rebekah K. Feist, Rahul Sharma, Leonardo Lopez
  • Publication number: 20170012157
    Abstract: A light splitting optical module that converts incident light into electrical energy, the module including a solid optical element comprising an input end for receiving light, a first side, and a second side spaced from the first side, a first solar cell adjacent to the first side of the solid optical element, and a second solar cell adjacent to the second side of the solid optical element. The first solar cell is positioned to absorb a first subset of incident light and reflect a first remainder of the incident light to the second solar cell through the solid optical element, wherein the first solar cell has a lower band gap than the second cell.
    Type: Application
    Filed: December 22, 2014
    Publication date: January 12, 2017
    Inventors: Carissa Eisler, Weijun Zhou, Emily D. Kosten, Emily C. Warmann, Carrie E. Hofmann, Harry A. Atwater, Rebekah K. Feist, James C. Stevens
  • Patent number: 9287435
    Abstract: The present invention uses a treatment that involves an etching treatment that forms a pnictogen-rich region on the surface of a pnictide semiconductor film The region is very thin in many modes of practice, often being on the order of only 2 to 3 nm thick in many embodiments. Previous investigators have left the region in place without appreciating the fact of its presence and/or that its presence, if known, can compromise electronic performance of resultant devices. The present invention appreciates that the formation and removal of the region advantageously renders the pnictide film surface highly smooth with reduced electronic defects. The surface is well-prepared for further device fabrication.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: March 15, 2016
    Assignees: Dow Global Technologies LLC, California Institute of Technology
    Inventors: Gregory M. Kimball, Harry A. Atwater, Nathan S. Lewis, Jeffrey P. Bosco, Rebekah K. Feist
  • Publication number: 20160071994
    Abstract: The principles of the present invention are used to reduce the conduction band offset between chalcogenide emitter and pnictide absorber films. Alternatively stated, the present invention provides strategies to more closely match the electron affinity characteristics between the absorber and emitter components. The resultant photovoltaic devices have the potential to have higher efficiency and higher open circuit voltage. The resistance of the resultant junctions would be lower with reduced current leakage. In illustrative modes of practice, the present invention incorporates one or more tuning agents into the emitter layer in order to adjust the electron affinity characteristics, thereby reducing the conduction band offset between the emitter and the absorber.
    Type: Application
    Filed: January 30, 2013
    Publication date: March 10, 2016
    Inventors: Jeffrey P. Bosco, Gregory M. Kimball, Harry A. Atwater, Nathan S. Lewis, Rebekah K. Feist, Marty W. DeGroot
  • Publication number: 20150325731
    Abstract: The invention relates to a photovoltaic article comprising a plurality of photovoltaic cells having first (22) and second (24) electrical connector segments in contact with the top side (18) of a first cell (10) and the backside (16) of a second adjacent cell (12). The materials used to form the electrical connector segments are selected to minimize corrosion, maximize contact area, and lower contact resistance over the lifetime of the article.
    Type: Application
    Filed: August 9, 2013
    Publication date: November 12, 2015
    Inventors: Abhijit A. Namjoshi, Rebekah K. Feist, Leonardo C. Lopez, Michael E. Mills, Lindsey A. Clark, Kevin P. Capaldo
  • Publication number: 20150325717
    Abstract: An article of manufacture includes a PV element having a conductive layer positioned on a light-incident side of the PV element, a conductor electrically coupled to the conductive layer, and a conductive particle matrix interposed between the conductor and the conductive layer at a number of positions on the conductive layer. The article further includes a carrier film positioned on the light-incident side of the PV element, and a non-conductive adhesive, where the adhesive and the conductor are positioned between the carrier film and the conductive layer.
    Type: Application
    Filed: August 6, 2013
    Publication date: November 12, 2015
    Inventors: Abhijit A. Namboshi, Kevin P. Capaldo, Lindsey A. Clark, Marty W. DeGrot, Rebekah K. Feist, Leonardo C. Lopez, Michael E. Mills, Matt A. Stempki
  • Publication number: 20150287842
    Abstract: A photovoltaic system that converts incident light into electrical energy that includes a light trapping optical module having a light randomizing dielectric slab with a first surface and a second surface, a first cell adjacent to the first surface of the slab that has a bandgap of lower energy than the energy of absorption onset of the dielectric slab, at least one filter element in optical contact with the second surface of the dielectric slab, and a sub-cell array with a plurality of photovoltaic sub-cells, wherein at least one of the sub-cells has a first surface that is in optical contact with the at least one filter element.
    Type: Application
    Filed: August 30, 2013
    Publication date: October 8, 2015
    Inventors: Emily D. Kosten, Christofer A. Flowers, John V. Lloyd, Carrie E. Hofmann, Harry A. Atwater, Emily C. Warmann, James C. Stevens, Rebekah K. Feist, Weijun Zhou, Michael E. Mills, Narayan Ramesh
  • Publication number: 20150287856
    Abstract: A solar module (2) comprising: (a) a plurality of interconnected photovoltaic cells (4); (b) a forward protective layer (22); (c) a rearward protective layer (24); and (d) an reinforcement (10); wherein the reinforcement is integrally located within the solar module and extends from a location substantially proximate to the forward protective layer to a location substantially proximate to the rearward protective layer.
    Type: Application
    Filed: November 25, 2013
    Publication date: October 8, 2015
    Inventors: Keith L. Kauffman, Kwanho Yang, Jie Feng, Hua Liu, Scott T. Burr, Rebekah K. Feist, Rahul Sharma, Leonardo Lopez
  • Publication number: 20150267032
    Abstract: A composition comprising a phase separated block copolymer and an inorganic dielectric nanoparticle, wherein the nanoparticle is dispersed in the copolymer and is present primarily in one phase. For example, a Ti02 nanocomposite can be created via the in situ formation of Ti02 within a silane-grafted OBC. Taking advantage of the phase morphology of the OBC and the differential swelling of the hard and soft segments, due to their inherent crystallinity, enables the selective incorporation of Ti02 nanoparticles into the soft segments of the OBC.
    Type: Application
    Filed: October 14, 2013
    Publication date: September 24, 2015
    Inventors: Phillip D. Hustad, Stephanie L. Potisek, Rebekah K. Feist, James C. Stevens, Michael E. Mills, Yuanqiao Rao, Eddy I. Garcia-Meitin
  • Publication number: 20150255637
    Abstract: The present invention provides strategies for improving the quality of the insulating layer in MIS and SIS devices in which the insulator layer interfaces with at least one pnictide-containing film The principles of the present invention are based at least in part on the discovery that very thin (20 nm or less) insulating films comprising a chalcogenide such as i-ZnS are surprisingly superior tunnel barriers in MIS and SIS devices incorporating pnictide semiconductors. In one aspect, the present invention relates to a photovoltaic device, comprising: a semiconductor region comprising at least one pnictide semiconductor; an insulating region electrically coupled to the semiconductor region, wherein the insulating region comprises at least one chalcogenide and has a thickness in the range from 0.5 nm to 20 nm; and a rectifying region electrically coupled to the semiconductor region in a manner such that the insulating region is electrically interposed between the collector region and the semiconductor region.
    Type: Application
    Filed: October 7, 2013
    Publication date: September 10, 2015
    Inventors: Jeffrey P. Bosco, Rebekah K. Feist, Harry A. Atwater, Marty W. Degroot, James C. Stevens, Gregory M. Kimball
  • Publication number: 20150221800
    Abstract: A light splitting optical module that converts incident light into electrical energy, the module including a solid optical element comprising an input end for receiving light, a first side, and a second side spaced from the first side, a first solar cell adjacent to the first side of the solid optical element, and a second solar cell adjacent to the second side of the solid optical element. The first solar cell is positioned to absorb a first subset of incident light and reflect a first remainder of the incident light to the second solar cell through the solid optical element.
    Type: Application
    Filed: August 30, 2013
    Publication date: August 6, 2015
    Inventors: Carissa N. Eisler, Emily D. Kosten, Harry A. Atwater, Emily C. Warmann, Carrie E. Hofmann, Rebekah K. Feist, James C. Stevens, Weijun Zhou, Michael E. Mills, Narayan Ramesh
  • Publication number: 20150222224
    Abstract: An article of manufacture includes at least two solar active elements separated by a gap, with a flexible material provided to define the gap. The article provides for enhanced resilience and conformity to an installation surface.
    Type: Application
    Filed: July 5, 2012
    Publication date: August 6, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: Onkareshwar V. Bijjargi, Siddharth Ram R. Athreya, Edoardo Nicoli, Hua Liu, Keith L. Kauffmann, Jie Feng, Leonardo C. Lopez, Rebekah K. Feist, Rahul Sharma
  • Publication number: 20150207009
    Abstract: The present invention provides photovoltaic devices that comprise multiple bandgap cell arrays in combination with spectrum splitting optics. The spectrum splitting optics include one or more optical spectrum splitting modules that include two or more optical splitting, diffractive elements that are optically in series to successively and diffractively split incident light into segments or slices that are independently directed onto different photovoltaic cell(s) of the array having appropriate bandgap characteristics.
    Type: Application
    Filed: August 30, 2013
    Publication date: July 23, 2015
    Inventors: Matthew D. Escarra, Sunita Darbe, Harry A. Atwater, Rebekah K. Feist, Carrie E. Hofmann, Emily D. Kosten, Michael E. Mills, Narayan Ramesh, James C. Stevens
  • Publication number: 20150011042
    Abstract: The present invention uses a treatment that involves an etching treatment that forms a pnictogen-rich region on the surface of a pnictide semiconductor film The region is very thin in many modes of practice, often being on the order of only 2 to 3 nm thick in many embodiments. Previous investigators have left the region in place without appreciating the fact of its presence and/or that its presence, if known, can compromise electronic performance of resultant devices. The present invention appreciates that the formation and removal of the region advantageously renders the pnictide film surface highly smooth with reduced electronic defects. The surface is well-prepared for further device fabrication.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 8, 2015
    Inventors: Gregory M. Kimball, Harry A. Atwater, Nathan S. Lewis, Jeffrey P. Bosco, Rebekah K. Feist
  • Publication number: 20140360566
    Abstract: The present invention provides methods of making photovoltaic devices incorporating improved pnictide semiconductor films. In particular, the principles of the present invention are used to improve the surface quality of pnictide films. Photovoltaic devices incorporating these films demonstrate improved electronic performance. As an overview, the present invention involves a methodology that metalizes the pnictide film, anneals the metalized film under conditions that tend to form an alloy between the pnictide film and the alloy, and then removes the excess metal and at least a portion of the alloy. In one mode of practice, the pnictide semiconductor is Zinc phosphide and the metal is Magnesium.
    Type: Application
    Filed: January 30, 2013
    Publication date: December 11, 2014
    Inventors: Gregory M. Kimball, Marty W. DeGroot, Harry A. Atwater, Nathan S. Lewis, Rebekah K. Feist, Jeffrey P. Bosco
  • Publication number: 20140360554
    Abstract: The present invention is premised upon a method of producing two or more thin-film-based interconnected photovoltaic cells comprising the steps of: a) providing a photovoltaic article comprising: a flexible conductive substrate, at least on photo-electrically active layer, a top transparent conducting layer, and a carrier structure disposed above the tap transparent layer; b) forming one or more first channels through the layers of the photovoltaic article; c) applying an insulating layer to the conductive substrate and spanning the one or more first channel; d) removing the carrier structure; e) forming an addition to the one or more first channels through the insulating layer; f) forming one or more second channels off set from the one or mom first channels through the insulating layer to expose a conductive surface of the flexible conductive substrate; g) applying a first electrically conductive material to the conductive surface of the flexible conductive substrate via the one or more; second channels; h)
    Type: Application
    Filed: December 11, 2012
    Publication date: December 11, 2014
    Inventors: Rebekah K. Feist, Michael E. Mills
  • Publication number: 20140345669
    Abstract: The present invention is directed to a method of producing two or more thin-film-based interconnected photovoltaic cells (100) comprising the steps of: a) providing a photovoltaic article comprising: a flexible conductive substrate, at least one photoelectrically active layer, and a top transparent conducting layer; b) forming one or more first channels (140) through the flexible conductive substrate to expose a portion of the photoelectrical]?—active layer; e) applying an insulating segment to the conductive substrate and spanning the one or more first-channel; d) forming one or more second channels off set from the one or more first channels—‘through—the photoelectrically active layer to expose a conductive surface of the flexible conductive substrate; I) forming one or more third channels (170) off set from both the first channels and the second channels, through the top transparent conducting layer and to the photoelectrically active layer: and g) applying an electrically conductive material (180) above t
    Type: Application
    Filed: December 11, 2012
    Publication date: November 27, 2014
    Applicant: Dow Global Technologies LLC
    Inventors: Rebekah K. Feist, Michael E. Mills
  • Publication number: 20140224317
    Abstract: The present invention provides optoelectronic devices containing at least one conforming, thin film barrier coating provided on a nonplanar surface comprising a plurality of junctures. The barrier coating has a hybrid morphology including crystalline domains distributed in an amorphous matrix. The conformal coatings protect the optoelectronic device with long-lasting, durable, high quality barrier protection even though the coatings have sufficient crystalline characteristics so that many embodiments are electrically conductive.
    Type: Application
    Filed: July 27, 2012
    Publication date: August 14, 2014
    Applicants: REGENTS OF THE UNIVERSITE OF MINNESOTA, DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Rebekah K. Feist, Banu Tosun, Stephen A. Campbell, Eray Aydill