Patents by Inventor Redd H. Smith

Redd H. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11370049
    Abstract: Methods for welding a particle-matrix composite body to another body and repairing particle-matrix composite bodies are disclosed. Additionally, earth-boring tools having a joint that includes an overlapping root portion and a weld groove having a face portion with a first bevel portion and a second bevel portion are disclosed. In some embodiments, a particle-matrix bit body of an earth-boring tool may be repaired by removing a damaged portion, heating the particle-matrix composite bit body, and forming a built-up metallic structure thereon. In other embodiments, a particle-matrix composite body may be welded to a metallic body by forming a joint, heating the particle-matrix composite body, melting a metallic filler material forming a weld bead and cooling the welded particle-matrix composite body, metallic filler material and metallic body at a controlled rate.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: June 28, 2022
    Assignee: Baker Hughes Holdings LLC
    Inventors: John H. Stevens, Redd H. Smith, James Andy Oxford, Jose Ramirez, Nathan David Ames, Shuchi Khurana
  • Publication number: 20200061732
    Abstract: Methods for welding a particle-matrix composite body to another body and repairing particle-matrix composite bodies are disclosed. Additionally, earth-boring tools having a joint that includes an overlapping root portion and a weld groove having a face portion with a first bevel portion and a second bevel portion are disclosed. In some embodiments, a particle-matrix bit body of an earth-boring tool may be repaired by removing a damaged portion, heating the particle-matrix composite bit body, and forming a built-up metallic structure thereon. In other embodiments, a particle-matrix composite body may be welded to a metallic body by forming a joint, heating the particle-matrix composite body, melting a metallic filler material forming a weld bead and cooling the welded particle-matrix composite body, metallic filler material and metallic body at a controlled rate.
    Type: Application
    Filed: November 1, 2019
    Publication date: February 27, 2020
    Inventors: John H. Stevens, Redd H. Smith, James Andy Oxford, Jose Ramirez, Nathan David Ames, Shuchi Khurana
  • Patent number: 10493550
    Abstract: Methods for welding a particle-matrix composite body to another body and repairing particle-matrix composite bodies are disclosed. Additionally, earth-boring tools having a joint that includes an overlapping root portion and a weld groove having a face portion with a first bevel portion and a second bevel portion are disclosed. In some embodiments, a particle-matrix bit body of an earth-boring tool may be repaired by removing a damaged portion, heating the particle-matrix composite bit body, and forming a built-up metallic structure thereon. In other embodiments, a particle-matrix composite body may be welded to a metallic body by forming a joint, heating the particle-matrix composite body, melting a metallic filler material forming a weld bead and cooling the welded particle-matrix composite body, metallic filler material and metallic body at a controlled rate.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: December 3, 2019
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: John H. Stevens, Redd H. Smith, James Andy Oxford, Jose Ramirez, Nathan David Ames, Shuchi Khurana
  • Patent number: 10144113
    Abstract: Partially formed earth-boring rotary drill bits comprise a first less than fully sintered particle-matrix component having at least one recess, and at least a second less than fully sintered particle-matrix component disposed at least partially within the at least one recess. Each less than fully sintered particle-matrix component comprises a green or brown structure including compacted hard particles, particles comprising a metal alloy matrix material, and an organic binder material. The at least a second less than fully sintered particle-matrix component is configured to shrink at a slower rate than the first less than fully sintered particle-matrix component due to removal of organic binder material from the less than fully sintered particle-matrix components in a sintering process to be used to sinterbond the first less than fully sintered particle-matrix component to the at least a second less than fully sintered particle-matrix component.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: December 4, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, Nicholas J. Lyons
  • Publication number: 20170321488
    Abstract: Partially formed earth-boring rotary drill bits comprise a first less than fully sintered particle-matrix component having at least one recess, and at least a second less than fully sintered particle-matrix component disposed at least partially within the at least one recess. Each less than fully sintered particle-matrix component comprises a green or brown structure including compacted hard particles, particles comprising a metal alloy matrix material, and an organic binder material. The at least a second less than fully sintered particle-matrix component is configured to shrink at a slower rate than the first less than fully sintered particle-matrix component due to removal of organic binder material from the less than fully sintered particle-matrix components in a sintering process to be used to sinterbond the first less than fully sintered particle-matrix component to the at least a second less than fully sintered particle-matrix component.
    Type: Application
    Filed: June 23, 2017
    Publication date: November 9, 2017
    Inventors: Redd H. Smith, Nicholas J. Lyons
  • Publication number: 20170266746
    Abstract: Methods for welding a particle-matrix composite body to another body and repairing particle-matrix composite bodies are disclosed. Additionally, earth-boring tools having a joint that includes an overlapping root portion and a weld groove having a face portion with a first bevel portion and a second bevel portion are disclosed. In some embodiments, a particle-matrix bit body of an earth-boring tool may be repaired by removing a damaged portion, heating the particle-matrix composite bit body, and forming a built-up metallic structure thereon. In other embodiments, a particle-matrix composite body may be welded to a metallic body by forming a joint, heating the particle-matrix composite body, melting a metallic filler material forming a weld bead and cooling the welded particle-matrix composite body, metallic filler material and metallic body at a controlled rate.
    Type: Application
    Filed: May 26, 2017
    Publication date: September 21, 2017
    Inventors: John H. Stevens, Redd H. Smith, James Andy Oxford, Jose Ramirez, Nathan David Amens, Shuchi Khurana
  • Patent number: 9700991
    Abstract: Partially formed earth-boring rotary drill bits comprise a first less than fully sintered particle-matrix component having at least one recess, and at least a second less than fully sintered particle-matrix component disposed at least partially within the at least one recess. Each less than fully sintered particle-matrix component comprises a green or brown structure including compacted hard particles, particles comprising a metal alloy matrix material, and an organic binder material. The at least a second less than fully sintered particle-matrix component is configured to shrink at a slower rate than the first less than fully sintered particle-matrix component due to removal of organic binder material from the less than fully sintered particle-matrix components in a sintering process to be used to sinterbond the first less than fully sintered particle-matrix component to the at least a second less than fully sintered particle-matrix component.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: July 11, 2017
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, Nicholas J. Lyons
  • Patent number: 9662733
    Abstract: Methods for welding a particle-matrix composite body to another body and repairing particle-matrix composite bodies are disclosed. Additionally, earth-boring tools having a joint that includes an overlapping root portion and a weld groove having a face portion with a first bevel portion and a second bevel portion are disclosed. In some embodiments, a particle-matrix bit body of an earth-boring tool may be repaired by removing a damaged portion, heating the particle-matrix composite bit body, and forming a built-up metallic structure thereon. In other embodiments, a particle-matrix composite body may be welded to a metallic body by forming a joint, heating the particle-matrix composite body, melting a metallic filler material forming a weld bead and cooling the welded particle-matrix composite body, metallic filler material and metallic body at a controlled rate.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: May 30, 2017
    Assignee: Baker Hughes Incorporated
    Inventors: John H. Stevens, Redd H. Smith, James A. Oxford, Jose E. Ramirez, Nathan D. Ames, Shuchi P. Khurana
  • Patent number: 9273518
    Abstract: Methods of coupling a bearing assembly to a downhole tool include forming at least a portion of a downhole component from a diamond-enhanced material, applying a metal material to a surface of the downhole component using an ultrasonic molten metal process, and coupling at least a portion of the surface of the downhole component to at least another component of the downhole tool. Downhole tools include at least one component of a bearing assembly that is configured to move relative to a portion of the downhole tool. The at least one bearing component comprises a diamond-enhanced material and is coupled to a portion of the downhole tool by an ultrasonic molten metal process.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: March 1, 2016
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, James Andy Oxford, Alan J. Massey
  • Publication number: 20160023327
    Abstract: Partially formed earth-boring rotary drill bits comprise a first less than fully sintered particle-matrix component having at least one recess, and at least a second less than fully sintered particle-matrix component disposed at least partially within the at least one recess. Each less than fully sintered particle-matrix component comprises a green or brown structure including compacted hard particles, particles comprising a metal alloy matrix material, and an organic binder material. The at least a second less than fully sintered particle-matrix component is configured to shrink at a slower rate than the first less than fully sintered particle-matrix component due to removal of organic binder material from the less than fully sintered particle-matrix components in a sintering process to be used to sinterbond the first less than fully sintered particle-matrix component to the first less than fully sintered particle-matrix component.
    Type: Application
    Filed: October 5, 2015
    Publication date: January 28, 2016
    Inventors: Redd H. Smith, Nicholas J. Lyons
  • Patent number: 9192989
    Abstract: Partially formed earth-boring rotary drill bits comprise a first less than fully sintered particle-matrix component having at least one recess, and at least a second less than fully sintered particle-matrix component disposed at least partially within the at least one recess. Each less than fully sintered particle-matrix component comprises a green or brown structure including compacted hard particles, particles comprising a metal alloy matrix material, and an organic binder material. The at least a second less than fully sintered particle-matrix component is configured to shrink at a slower rate than the first less than fully sintered particle-matrix component due to removal of organic binder material from the less than fully sintered particle-matrix components in a sintering process to be used to sinterbond the first less than fully sintered particle-matrix component to the first less than fully sintered particle-matrix component.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: November 24, 2015
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Redd H. Smith, Nicholas J. Lyons
  • Patent number: 9163461
    Abstract: Earth-boring rotary drill bits may include a bit body attached to a shank assembly at a joint. The joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: October 20, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, James L. Duggan, Anupam K. Singh
  • Patent number: 8973466
    Abstract: Earth-boring drill bits include a bit body, an element having an attachment feature bonded to the bit body, and a shank assembly. Methods for assembling an earth-boring rotary drill bit include bonding a threaded element to the bit body of a drill bit and engaging the shank assembly to the threaded element. A nozzle assembly for an earth-boring rotary drill bit may include a cylindrical sleeve having a threaded surface and a threaded nozzle disposed at least partially in the cylindrical sleeve and engaged therewith. Methods of forming an earth-boring drill bit include providing a nozzle assembly including a tubular sleeve and nozzle at least partially within a nozzle port of a bit body.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: March 10, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Oliver Matthews, III, David A. Stockey, Redd H. Smith
  • Publication number: 20140318024
    Abstract: Partially formed earth-boring rotary drill bits comprise a first less than fully sintered particle-matrix component having at least one recess, and at least a second less than fully sintered particle-matrix component disposed at least partially within the at least one recess. Each less than fully sintered particle-matrix component comprises a green or brown structure including compacted hard particles, particles comprising a metal alloy matrix material, and an organic binder material. The at least a second less than fully sintered particle-matrix component is configured to shrink at a slower rate than the first less than fully sintered particle-matrix component due to removal of organic binder material from the less than fully sintered particle-matrix components in a sintering process to be used to sinterbond the first less than fully sintered particle-matrix component to the first less than fully sintered particle-matrix component.
    Type: Application
    Filed: July 7, 2014
    Publication date: October 30, 2014
    Inventors: Redd H. Smith, Nicholas J. Lyons
  • Publication number: 20140284113
    Abstract: Earth-boring rotary drill bits may include a bit body attached to a shank assembly at a joint. The joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Inventors: Redd H. Smith, James L. Duggan, Anupam K. Singh
  • Patent number: 8770324
    Abstract: Partially formed earth-boring rotary drill bits comprise a first less than fully sintered particle-matrix component having at least one recess, and at least a second less than fully sintered particle-matrix component disposed at least partially within the at least one recess. Each less than fully sintered particle-matrix component comprises a green or brown structure including compacted hard particles, particles comprising a metal alloy matrix material, and an organic binder material. The at least a second less than fully sintered particle-matrix component is configured to shrink at a slower rate than the first less than fully sintered particle-matrix component due to removal of organic binder material from the less than fully sintered particle-matrix components in a sintering process to be used to sinterbond the first less than fully sintered particle-matrix component to the first less than fully sintered particle-matrix component.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: July 8, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, Nicholas J. Lyons
  • Patent number: 8746373
    Abstract: Earth-boring rotary drill bits may include a bit body attached to a shank assembly at a joint. The joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. The joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: June 10, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, James L. Duggan, Anupam K. Singh
  • Patent number: 8381844
    Abstract: Earth-boring drill bits include a bit body, an element having an attachment feature bonded to the bit body, and a shank assembly. Methods for assembling an earth-boring rotary drill bit include bonding a threaded element to the bit body of a drill bit and engaging the shank assembly to the threaded element. A nozzle assembly for an earth-boring rotary drill bit may include a cylindrical sleeve having a threaded surface and a threaded nozzle disposed at least partially in the cylindrical sleeve and engaged therewith. Methods of forming an earth-boring drill bit include providing a nozzle assembly including a tubular sleeve and nozzle at least partially within a nozzle port of a bit body.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: February 26, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Oliver Matthews, III, David A. Stockey, Redd H. Smith
  • Patent number: 8309018
    Abstract: Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 13, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Jared D. Gladney, James A. Oxford, Benjamin J. Chrest
  • Patent number: 8272295
    Abstract: Displacement members for use in forming a bit body of an earth-boring rotary drill bit include a body having an exterior surface, at least a portion of which is configured to define at least one surface of the bit body as the bit body is formed around the displacement member. In some embodiments, the body may be hollow and/or porous. Methods for forming earth-boring rotary drill bits include positioning such a displacement member in a mold and forming a bit body around the displacement member in the mold. Additional methods include pressing a plurality of particles to form a body, forming at least one recess in the body, positioning such a displacement member in the recess, and sintering the body to form a bit body.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: September 25, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens