Patents by Inventor Regina E. GROVES

Regina E. GROVES has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220142694
    Abstract: A medical device having a catheter and a fluid delivery conduit entirely disclosed within a portion of the catheter. The catheter may have a thermally transmissive region in fluid communication with the fluid delivery conduit and a rod disposed within at least a portion of the fluid delivery conduit. The medical device may control variable fluid flow with the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Additional configurations provided herein may allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Application
    Filed: January 27, 2022
    Publication date: May 12, 2022
    Inventors: Regina E. GROVES, Jean-Pierre LALONDE, Timothy G. LASKE, Claudia LUECKGE, Dan WITTENBERGER, Ramin SABBAGHE-KERMANI, Mahmoud KABIR-SERAJ
  • Patent number: 11266457
    Abstract: Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: March 8, 2022
    Assignee: Medtronic CryoCath LP
    Inventors: Regina E. Groves, Jean-Pierre Lalonde, Timothy G. Laske, Claudia Lueckge, Dan Wittenberger, Ramin Sabbaghe-Kermani, Mahmoud Kabir-Seraj
  • Patent number: 11141209
    Abstract: A method and system for providing lesion depth feedback during an ablation procedure. In particular, the method and system provide feedback data or information relating to lesion depth in myocardial tissue during a cryoablation procedure. A plurality of tissue temperature measurements may be transmitted from a plurality of thermocouples disposed on a cryotreatment element, which measurements may be used to determine a slope of change in temperature sensed by each thermocouple over time. The circulation of coolant through the treatment element may be adjusted when the slope changes. A change in slope may indicate that the cryoablation temperatures have passed through target myocardial tissue into non-target, non-myocardial tissue, which may result in collateral damage to structures near the heart.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: October 12, 2021
    Inventors: Jean-Pierre Lalonde, Regina E. Groves, Timothy G. Laske, Paul A. Iaizzo, John C. Bischof
  • Publication number: 20190209230
    Abstract: Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 11, 2019
    Inventors: Regina E. GROVES, Jean-Pierre LALONDE, Timothy G. LASKE, Claudia LUECKGE, Dan WITTENBERGER, Ramin SABBAGHE-KERMANI, Mahmoud KABIR-SERAJ
  • Patent number: 10285748
    Abstract: Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: May 14, 2019
    Assignee: Medtronic CryoCath LP
    Inventors: Regina E. Groves, Jean-Pierre Lalonde, Timothy G. Laske, Claudia Lueckge, Dan Wittenberger, Ramin Sabbaghe-Kermani, Mahmoud Kabir-Seraj
  • Publication number: 20190008572
    Abstract: A method and system for providing lesion depth feedback during an ablation procedure. In particular, the method and system provide feedback data or information relating to lesion depth in myocardial tissue during a cryoablation procedure. A plurality of tissue temperature measurements may be transmitted from a plurality of thermocouples disposed on a cryotreatment element, which measurements may be used to determine a slope of change in temperature sensed by each thermocouple over time. The circulation of coolant through the treatment element may be adjusted when the slope changes. A change in slope may indicate that the cryoablation temperatures have passed through target myocardial tissue into non-target, non-myocardial tissue, which may result in collateral damage to structures near the heart.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 10, 2019
    Inventors: Jean-Pierre Lalonde, Regina E. Groves, Timothy G. Laske, Paul A. Iaizzo, John C. Bischof
  • Patent number: 10098685
    Abstract: A method and system for providing lesion depth feedback during an ablation procedure. In particular, the method and system provide feedback data or information relating to lesion depth in myocardial tissue during a cryoablation procedure. A plurality of tissue temperature measurements may be transmitted from a plurality of thermocouples disposed on a cryotreatment element, which measurements may be used to determine a slope of change in temperature sensed by each thermocouple over time. The circulation of coolant through the treatment element may be adjusted when the slope changes. A change in slope may indicate that the cryoablation temperatures have passed through target myocardial tissue into non-target, non-myocardial tissue, which may result in collateral damage to structures near the heart.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: October 16, 2018
    Assignee: Medtronic CryoCath LP
    Inventors: Jean-Pierre Lalonde, Regina E. Groves, Timothy G. Laske, Paul A. Iaizzo, John C. Bischof
  • Patent number: 10010368
    Abstract: A method and system capable of identifying ectopic foci, rotors, or conduction pathways involved in reentrant arrhythmias within cardiac tissue, and then treating identified ectopic foci, rotors, and/or pathways with either lethal or sub-lethal temperatures. The system includes a medical device having one or more mapping elements and one or more treatment elements, and a computer programmable to identify ectopic foci and rotors based at least in part on signals received from the one or more mapping elements at one or more locations.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: July 3, 2018
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Timothy G. Laske, Joseph Allen Knight, Regina E. Groves
  • Publication number: 20180014883
    Abstract: A method and system capable of identifying ectopic foci, rotors, or conduction pathways involved in reentrant arrhythmias within cardiac tissue, and then treating identified ectopic foci, rotors, and/or pathways with either lethal or sub-lethal temperatures. The system includes a medical device having one or more mapping elements and one or more treatment elements, and a computer programmable to identify ectopic foci and rotors based at least in part on signals received from the one or more mapping elements at one or more locations.
    Type: Application
    Filed: September 28, 2017
    Publication date: January 18, 2018
    Inventors: Timothy G. LASKE, Joseph Allen KNIGHT, Regina E. GROVES
  • Patent number: 9801681
    Abstract: A method and system capable of identifying ectopic foci, rotors, or conduction pathways involved in reentrant arrhythmias within cardiac tissue, and then treating identified ectopic foci, rotors, and/or pathways with either lethal or sub-lethal temperatures. The system includes a medical device having one or more mapping elements and one or more treatment elements, and a computer programmable to identify ectopic foci and rotors based at least in part on signals received from the one or more mapping elements at one or more locations.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: October 31, 2017
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Timothy G. Laske, Joseph Allen Knight, Regina E. Groves
  • Publication number: 20160206360
    Abstract: Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Application
    Filed: March 25, 2016
    Publication date: July 21, 2016
    Inventors: Regina E. GROVES, Jean-Pierre LALONDE, Timothy G. LASKE, Claudia LUECKGE, Dan WITTENBERGER, Ramin SABBAGHE-KERMANI, Mahmoud KABIR-SERAJ
  • Patent number: 9352121
    Abstract: Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: May 31, 2016
    Assignee: Medtronic CryoCath LP
    Inventors: Regina E. Groves, Jean-Pierre Lalonde, Timothy G. Laske, Claudia Lueckge, Dan Wittenberger, Ramin Sabbaghe-Kermani, Mahmoud Kabir-Seraj
  • Patent number: 9320871
    Abstract: Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: April 26, 2016
    Assignee: Medtronic CryoCath LP
    Inventors: Regina E. Groves, Jean-Pierre Lalonde, Timothy G. Laske, Claudia Lueckge, Dan Wittenberger, Ramin Sabbaghe-Kermani, Mahmoud Kabir-Seraj
  • Patent number: 9314588
    Abstract: Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: April 19, 2016
    Assignee: Medtronic CryoCath LP
    Inventors: Regina E. Groves, Jean-Pierre Lalonde, Timothy G. Laske, Claudia Lueckge, Dan Wittenberger, Ramin Sabbaghe-Kermani, Mahmoud Kabir Seraj
  • Publication number: 20150119868
    Abstract: A method and system for providing lesion depth feedback during an ablation procedure. In particular, the method and system provide feedback data or information relating to lesion depth in myocardial tissue during a cryoablation procedure. A plurality of tissue temperature measurements may be transmitted from a plurality of thermocouples disposed on a cryotreatment element, which measurements may be used to determine a slope of change in temperature sensed by each thermocouple over time. The circulation of coolant through the treatment element may be adjusted when the slope changes. A change in slope may indicate that the cryoablation temperatures have passed through target myocardial tissue into non-target, non-myocardial tissue, which may result in collateral damage to structures near the heart.
    Type: Application
    Filed: February 27, 2014
    Publication date: April 30, 2015
    Applicant: MEDTRONIC CRYOCATH LP
    Inventors: Jean-Pierre Lalonde, Regina E. Groves, Timothy G. Laske, Paul A. Iaizzo, John C. Bischof
  • Publication number: 20140052118
    Abstract: A method and system capable of identifying ectopic foci, rotors, or conduction pathways involved in reentrant arrhythmias within cardiac tissue, and then treating identified ectopic foci, rotors, and/or pathways with either lethal or sub-lethal temperatures. The system includes a medical device having one or more mapping elements and one or more treatment elements, and a computer programmable to identify ectopic foci and rotors based at least in part on signals received from the one or more mapping elements at one or more locations.
    Type: Application
    Filed: January 24, 2013
    Publication date: February 20, 2014
    Applicant: MEDTRONIC ABLATION FRONTIERS LLC
    Inventors: Timothy G. LASKE, Joseph Allen KNIGHT, Regina E. GROVES
  • Publication number: 20130110099
    Abstract: Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 2, 2013
    Applicant: MEDTRONIC CRYOCATH LP
    Inventors: Regina E. GROVES, Jean-Pierre LALONDE, Timothy G. LASKE, Claudia LUECKGE, Dan WITTENBERGER, Ramin SABBAGHE-KERMANI, Mahmoud Kabir SERAJ
  • Publication number: 20130104993
    Abstract: Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Application
    Filed: March 1, 2012
    Publication date: May 2, 2013
    Applicant: MEDTRONIC CRYOCATH LP
    Inventors: Regina E. GROVES, Jean-Pierre LALONDE, Timothy G. LASKE, Claudia LUECKGE, Dan WITTENBERGER, Ramin SABBAGHE-KERMANI, Mahmoud KABIR-SERAJ
  • Publication number: 20130110100
    Abstract: Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
    Type: Application
    Filed: March 1, 2012
    Publication date: May 2, 2013
    Applicant: MEDTRONIC CRYOCATH LP
    Inventors: Regina E. GROVES, Jean-Pierre LALONDE, Timothy G. LASKE, Claudia LUECKGE, Dan WITTENBERGER, Ramin SABBAGHE-KERMANI, Mahmoud KABIR-SERAJ