Patents by Inventor Reigh Walling

Reigh Walling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8290634
    Abstract: A voltage control arrangement for a system of multiple windfarms with transmission lines. Voltage is regulated at a point of regulation on the system, such as a high voltage substation or other system bus. Regulation is achieved at the point of regulation by sensing the voltage, comparing to a reference voltage, and adjusting the reactive power output of the wind turbines and other equipment in the system. The regulation point may be shifted to another point if needed to respect voltage limits at that points of the system after attempting to shift reactive load to restore voltage within limits at the other points in the system. The reference voltage may be adjusted to minimize losses for the system of multiple windfarms and transmission lines. A loss optimizing algorithm is applied to the combined multiple windfarm and transmission line to shift reactive load among local windfarms to minimize losses and to shift reactive load among individual wind turbines within an individual windfarm.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: October 16, 2012
    Assignee: General Electric Company
    Inventors: Einar V. Larsen, Reigh A. Walling, Kara Clark
  • Publication number: 20120010756
    Abstract: A voltage control arrangement for a system of multiple windfarms with transmission lines. Voltage is regulated at a point of regulation on the system, such as a high voltage substation or other system bus. Regulation is achieved at the point of regulation by sensing the voltage, comparing to a reference voltage, and adjusting the reactive power output of the wind turbines and other equipment in the system. The regulation point may be shifted to another point if needed to respect voltage limits at that points of the system after attempting to shift reactive load to restore voltage within limits at the other points in the system. The reference voltage may be adjusted to minimize losses for the system of multiple windfarms and transmission lines. A loss optimizing algorithm is applied to the combined multiple windfarm and transmission line to shift reactive load among local windfarms to minimize losses and to shift reactive load among individual wind turbines within an individual windfarm.
    Type: Application
    Filed: September 16, 2011
    Publication date: January 12, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Einar V. Larsen, Reigh A. Walling, Kara Clark
  • Patent number: 8041465
    Abstract: A voltage control arrangement for a system of multiple windfarms with transmission lines. Voltage is regulated at a point of regulation on the system, such as a high voltage substation or other system bus. Regulation is achieved at the point of regulation by sensing the voltage, comparing to a reference voltage, and adjusting the reactive power output of the wind turbines and other equipment in the system. The regulation point may be shifted to another point if needed to respect voltage limits at that points of the system after attempting to shift reactive load to restore voltage within limits at the other points in the system. The reference voltage may be adjusted to minimize losses for the system of multiple windfarms and transmission lines. A loss optimizing algorithm is applied to the combined multiple windfarm and transmission line to shift reactive load among local windfarms to minimize losses and to shift reactive load among individual wind turbines within an individual windfarm.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: October 18, 2011
    Assignee: General Electric Company
    Inventors: Einar V. Larsen, Reigh A. Walling, Kara Clark
  • Patent number: 7994658
    Abstract: A windfarm system is provided that is optimized for minimizing electrical loss. The windfarm system includes a plurality of wind turbine generators and a collector system including a conductor or network of conductors. The collector system also including a plurality of transformers with one or more transformers connected between each wind turbine generator and the conductors, and a substation transformer connecting the windfarm collector system to the electrical grid. The windfarm system also includes a monitoring system for monitoring the windfarm system electrical output and thermal condition, and outputs of the individual wind turbine generators. A control function may include voltage and real and reactive power commands to the individual wind turbine generators. The control function incorporates an algorithm whose technical effect is minimizing electrical losses for the windfarm system.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: August 9, 2011
    Assignee: General Electric Company
    Inventors: Mark E. Cardinal, Robert W. Delmerico, Nicholas W. Miller, Reigh A. Walling
  • Publication number: 20100094474
    Abstract: A voltage control arrangement for a system of multiple windfarms with transmission lines. Voltage is regulated at a point of regulation on the system, such as a high voltage substation or other system bus. Regulation is achieved at the point of regulation by sensing the voltage, comparing to a reference voltage, and adjusting the reactive power output of the wind turbines and other equipment in the system. The regulation point may be shifted to another point if needed to respect voltage limits at that points of the system after attempting to shift reactive load to restore voltage within limits at the other points in the system. The reference voltage may be adjusted to minimize losses for the system of multiple windfarms and transmission lines. A loss optimizing algorithm is applied to the combined multiple windfarm and transmission line to shift reactive load among local windfarms to minimize losses and to shift reactive load among individual wind turbines within an individual windfarm.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 15, 2010
    Inventors: Einar V. Larsen, Reigh A. Walling, Kara Clark
  • Publication number: 20090218817
    Abstract: A windfarm system is provided that is optimized for minimizing electrical loss. The windfarm system includes a plurality of wind turbine generators and a collector system including a conductor or network of conductors. The collector system also including a plurality of transformers with one or more transformers connected between each wind turbine generator and the conductors, and a substation transformer connecting the windfarm collector system to the electrical grid. The windfarm system also includes a monitoring system for monitoring the windfarm system electrical output and thermal condition, and outputs of the individual wind turbine generators. A control function may include voltage and real and reactive power commands to the individual wind turbine generators. The control function incorporates an algorithm whose technical effect is minimizing electrical losses for the windfarm system.
    Type: Application
    Filed: February 28, 2008
    Publication date: September 3, 2009
    Inventors: Mark E. Cardinal, Robert W. Delmerico, Nicholas W. Miller, Reigh A. Walling
  • Patent number: 7397143
    Abstract: A wind turbine includes a rotor having a hub, at least one rotor blade coupled to the hub, and a rotor shaft coupled to said hub for rotation therewith. The wind turbine also includes an electrical generator coupled to the rotor shaft, and a generator-side frequency converter electrically coupled to the electrical generator for converting variable frequency AC received from the electrical generator into DC. The generator-side frequency converter is electrically coupled to an electrical load and is configured to at least one of supply reactive power to the electrical load and absorb reactive power from the electrical load. The wind turbine also includes a grid-side frequency converter electrically coupled to the generator-side frequency converter for converting DC received from the generator-side frequency converter into fixed frequency AC.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: July 8, 2008
    Assignee: General Electric Company
    Inventor: Reigh Walling
  • Publication number: 20080093855
    Abstract: A wind turbine includes a rotor having a hub, at least one rotor blade coupled to the hub, and a rotor shaft coupled to said hub for rotation therewith. The wind turbine also includes an electrical generator coupled to the rotor shaft, and a generator-side frequency converter electrically coupled to the electrical generator for converting variable frequency AC received from the electrical generator into DC. The generator-side frequency converter is electrically coupled to an electrical load and is configured to at least one of supply reactive power to the electrical load and absorb reactive power from the electrical load. The wind turbine also includes a grid-side frequency converter electrically coupled to the generator-side frequency converter for converting DC received from the generator-side frequency converter into fixed frequency AC.
    Type: Application
    Filed: December 17, 2007
    Publication date: April 24, 2008
    Inventor: Reigh Walling
  • Patent number: 7312537
    Abstract: A wind turbine includes a rotor having a hub, at least one rotor blade coupled to the hub, and a rotor shaft coupled to said hub for rotation therewith. The wind turbine also includes an electrical generator coupled to the rotor shaft, and a generator-side frequency converter electrically coupled to the electrical generator for converting variable frequency AC received from the electrical generator into DC. The generator-side frequency converter is electrically coupled to an electrical load and is configured to at least one of supply reactive power to the electrical load and absorb reactive power from the electrical load. The wind turbine also includes a grid-side frequency converter electrically coupled to the generator-side frequency converter for converting DC received from the generator-side frequency converter into fixed frequency AC.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: December 25, 2007
    Assignee: General Electric Company
    Inventor: Reigh Walling
  • Publication number: 20070290506
    Abstract: A wind turbine includes a rotor having a hub, at least one rotor blade coupled to the hub, and a rotor shaft coupled to said hub for rotation therewith. The wind turbine also includes an electrical generator coupled to the rotor shaft, and a generator-side frequency converter electrically coupled to the electrical generator for converting variable frequency AC received from the electrical generator into DC. The generator-side frequency converter is electrically coupled to an electrical load and is configured to at least one of supply reactive power to the electrical load and absorb reactive power from the electrical load. The wind turbine also includes a grid-side frequency converter electrically coupled to the generator-side frequency converter for converting DC received from the generator-side frequency converter into fixed frequency AC.
    Type: Application
    Filed: June 19, 2006
    Publication date: December 20, 2007
    Inventor: Reigh Walling
  • Publication number: 20070126428
    Abstract: A system for providing anti-islanding protection of a synchronous machine based distributed generator includes a frequency sensor configured to generate a generator frequency signal, a bandpass filter configured for filtering the generator frequency signal, a governor controller configured for using the filtered frequency signal to generate a power feedback signal, and a governor summation element configured for summing the filtered frequency signal, the power feedback signal, and a reference power to provide an electrical torque signal. Another system includes a voltage sensor configured to generate a generator terminal voltage signal, a feedback power calculator configured for generating a reactive feedback power signal, a bandpass filter configured for filtering the terminal voltage signal, and a PI controller summation element configured for summing the filtered terminal voltage signal, the reactive power feedback signal, and a reference reactive power to provide an error signal.
    Type: Application
    Filed: February 1, 2007
    Publication date: June 7, 2007
    Inventors: Zhihong Ye, Pengwei Du, John Nelson, Nicholas Miller, Reigh Walling
  • Publication number: 20070093978
    Abstract: A method for detecting islanding conditions in an electrical grid having a power line voltage includes monitoring a detectable signal different from the power line voltage at a generating station, superimposing the detectable signal onto the power line voltage at a grid point outside the generating station, and switching the generating station from a grid-connected mode of operation to an islanded mode of operation when the signal to which the detector is responsive is determined to be absent.
    Type: Application
    Filed: October 26, 2005
    Publication date: April 26, 2007
    Inventors: Reigh Walling, Andre Langel
  • Publication number: 20060082936
    Abstract: A system for providing anti-islanding protection of a synchronous machine based distributed generator includes a frequency sensor configured to generate a generator frequency signal, a bandpass filter configured for filtering the generator frequency signal, a governor controller configured for using the filtered frequency signal to generate a power feedback signal, and a governor summation element configured for summing the filtered frequency signal, the power feedback signal, and a reference power to provide an electrical torque signal. Another system includes a voltage sensor configured to generate a generator terminal voltage signal, a feedback power calculator configured for generating a reactive feedback power signal, a bandpass filter configured for filtering the terminal voltage signal, and a PI controller summation element configured for summing the filtered terminal voltage signal, the reactive power feedback signal, and a reference reactive power to provide an error signal.
    Type: Application
    Filed: October 15, 2004
    Publication date: April 20, 2006
    Inventors: Zhihong Ye, Pengwei Du, John Nelson, Nicholas Miller, Reigh Walling
  • Publication number: 20060004531
    Abstract: An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.
    Type: Application
    Filed: October 1, 2003
    Publication date: January 5, 2006
    Inventors: Zhihong Ye, Vinod John, Changyong Wang, Luis Garces, Rui Zhou, Lei Li, Reigh Walling, William Premerlani, Peter Sanza, Yan Liu, Mark Dame
  • Patent number: 6924565
    Abstract: Real and reactive power control for wind turbine generator systems. The technique described herein provides the potential to utilize the total capacity of a wind turbine generator system (e.g., a wind farm) to provide dynamic VAR (reactive power support). The VAR support provided by individual wind turbine generators in a system can be dynamically varied to suit application parameters.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: August 2, 2005
    Assignee: General Electric Company
    Inventors: Thomas A. Wilkins, Nagwa M. Elkachouty, Reigh A. Walling, James P. Lyons, Robert W. Delmerico, Sumit Bose, Nicholas Wright Miller
  • Publication number: 20050040655
    Abstract: Real and reactive power control for wind turbine generator systems. The technique described herein provides the potential to utilize the total capacity of a wind turbine generator system (e.g., a wind farm) to provide dynamic VAR (reactive power support). The VAR support provided by individual wind turbine generators in a system can be dynamically varied to suit application parameters.
    Type: Application
    Filed: August 18, 2003
    Publication date: February 24, 2005
    Inventors: Thomas Wilkins, Nagwa Elkachouty, Reigh Walling, James Lyons, Robert Delmerico, Sumit Bose, Nicholas Miller
  • Patent number: 6327162
    Abstract: A static series voltage regulator (SSVR) for an electric power distribution system protects a load on a feeder branch from voltage dips by boosting voltage under certain conditions. The SSVR contains a 3-phase voltage source inverter and a source bridge, fed from a source, supplying the dc side of the inverter. A series transformer is connected between the power source and a load coupling the inverter output to appear between the power source and the load. A surge filter connected in parallel with the series transformer protects the load from fast front voltage pulses produced by the inverter, and isolation and bypass switches isolate the inverter and series transformer from the power source and load. The inverter is controlled so that during normal operation it acts as a short on the series transformer, and, during a fault that causes a dip in the source voltage, it injects voltage in series with the source voltage to provide a boost action to maintain load voltage at a desired magnitude and balance.
    Type: Grant
    Filed: March 21, 1996
    Date of Patent: December 4, 2001
    Assignee: General Electric Company
    Inventors: Einar V. Larsen, Kara Clark, Reigh Walling
  • Patent number: 5360998
    Abstract: A series-capacitance compensated shielding circuit is located physically adjacent and parallel to a polyphase power transmission line for the purpose of partially cancelling the electromagnetic fields created by current flow through the transmission line. The shielding circuit forms a loop circuit around substantially the entire transmission line or a portion thereof, and is positioned such that a current is induced therein by the magnetic field produced by the alternating currents in the transmission line. Such induced current is tuned by the series capacitance to produce an optimized cancelling magnetic field, thus reducing the net electromagnetic fields created by the power lines along a right-of-way.
    Type: Grant
    Filed: March 29, 1991
    Date of Patent: November 1, 1994
    Assignee: General Electric Company
    Inventor: Reigh A. Walling